P R B X

Table of Contents	
Output specification	P2
Input specification	P3
General specification	P4
Environmental specifications	P5
EMC characteristics	P5
Thermal consideration	P6
Output over current protection	P7
Short circuitry protection	P7
Solder, clearing, and drying considerations	P7
External trim adjustment	P8
Characteristic curve	P10
Mechanical data	P19
Safety and installaion instruction	P19
MTBF and reliability	P19
Recommended external EMI filter	P20

POWERBOX Industrial Line T20A Series 20W 2:1 Single Output DC/DC Converter Manual

Introduction

The T20A-single series offer 20 watts of output power from a $2.00 \times 1.00 \times 0.40$ inch package. The T20A-single series with 2:1 wide input voltage of $9 \sim 18$ VDC, $18 \sim 36$ VDC and $36 \sim 75$ VDC and features 1600VDC of isolation, short-circuit and over-voltage protection.

DC/DC Converter Features

Low profile 2.00x1.00x0.40 inch
2:1 wide input voltage range
20 watts maximum output
Input to output isolation 1600VDC
Operating case temperature range 100°C , max.
Over-current protection
Output over-voltage protection
ISO 9001 certified manufacturing facilities
UL60950-1, EN60950-1 and IEC60950-1 licensed
CE mark meet 2006/95/EC, 93/68/EEC and 2004/108/EC
RoHS Directive compliant

Options

Positive logic and negative logic remote on/off

Output Specifications

Parameters	Model	Min	Тур	Max	Unit
Output voltage range	□□S1P5	1.485	1.500	1.515	VDC
	□□S1P8	1.782	1.800	1.818	VDC
	□□S2P5	2.475	2.500	2.525	VDC
	□□S3P3	3.267	3.300	3.333	VDC
	D S05	4.95	5.00	5.05	VDC
	S12	11.88	12.00	12.12	VDC
	D S15	14.85	15.00	15.15	VDC
Line regulation (LL to HL at full load)	All	-0.2		+0.2	%
Load regulation (min to 100% full load)	All	-0.5		+0.5	%
Output ripple and noise (20MHz bandwidth)	□□S1P5		60		mVp-p
(Measured with a 0.1µF/50V MLCC)	□□S1P8		60		mVp-p
	□□S2P5		60		mVp-p
	□□S3P3		60		mVp-p
	D S05		75		mVp-p
	S12		75		mVp-p
	S15		85		mVp-p
Temperature coefficient	All	-0.02		+0.02	%/°C
Output voltage overshoot (Vin(min) to Vin(max) full load; Ta=25°C)	All			5	% of Vout
Dynamic load response (Vin = Vin(nom) ; TA=25°C)					
Load step change from 75% to 100% or 100 to 75% of full load					
Peak Deviation	All		250		mV
Setting Time (Vout<10% peak deviation)	All		250		μs
Output over voltage protection (zener diode clamp)	□□S1P5		3.9		VDC
(Measured with a 0.1μ F/50V MLCC)	DS1P8		3.9		VDC
	□□S2P5		3.9		VDC
	□□S3P3		3.9		VDC
	D S05		6.2		VDC
	S12		15		VDC
	S15		18		VDC
Output over current protection	All			150	% of FL
Output short circuit protection	All	Hiccups, a	utomatics recovery		
Output capacitor load	□□S1P5			65000	μF
(Measured with a 0.1µF/50V MLCC)	□□S1P8			65000	μF
	□□S2P5			33000	μF
	□□S3P3			13000	μF
	 S05			6800	μF
	 S12			2200	μF
	S15			755	μF

Input Specifications

Parameters	Model	Min	Тур	Max	Unit
Operating input voltage	12S	9	12	18	VDC
	24S	18	24	36	VDC
	48S 🗖	36	48	75	VDC
Input reflected ripple current	All		20		mAp-p
Start up time (nominal input and constant resistive load power up)					
Power up	All		10	50	mS
Remote on/off	All		10	50	mS
Remote on/off					
Positive logic					
DC/DC On	All	3		12	VDC
DC/DC Off	All	0		1.2	VDC
Negative logic (option)					
DC/DC On	All	0		1.2	VDC
DC/DC Off	All	3		12	VDC
Input voltage					
Continuous	12S 🗆			18	VDC
	24S			36	VDC
	48S			75	VDC
Transient (100mS maximum)	12S			36	VDC
	24S			50	VDC
	48S=			100	VDC

General Specifications

Pa	ram	iete	rs

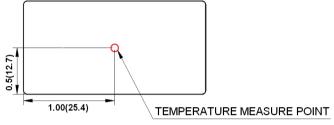
Parameters	Model	Min	Тур	Max	Unit
Efficiency, test at Vin, nom and full load	12S1P5		78		%
	12S1P8		79		%
	12S2P5		83		%
	12S3P3		85		%
	12S05		87		%
	12S12		86		%
	12S15		86		%
	24S1P5		80		%
	24S1P8		81		%
	24S2P5		84		%
	24S3P3		86		%
	24S05		89		%
	24S12		87		%
	24S15		87		%
	48S1P5		80		%
	48S1P8		82		%
	48S2P5		84		%
	48S3P3		87		%
	48S05		89		%
	48S12		88		%
	48S15		87		%
solation resistance	All	10 ⁹			Ω
Fransient response recovery time (25% load step change)	All		250		μS
solation capacitance	All			1000	pF
Switching frequency	All	450	500	550	kHz
Weight	All		27		g
MTBF MIL-HDBK-217F	All		1.583 x 10	6	hours
solation voltaga (1 minute)					
nput to output	All	1600			VDC
nput to case	All	1600			VDC
Dutput to case	All	1600			VDC
Case material	All	Nickel-co	ated copper		
Base material	All		luctive black plas	stic	
Potting material	All	Epoxy (UL			
Dimensions	All			0 x 1.00 x 0.40 in	ch)

Environmental Specifications

Parameters	Model	Min	Тур	Max	Unit
Operating case temperature (with derating)*	All	-40		85	°C
Maximum case temperature	All			100	°C
Storage temperature range	All	-55		105	°C
Thermal impedance**					
Natural convection	All		12		°C/W
Natural convection with heat-sink	All		10		°C/W
Thermal shock	All	MIL-STD-	-810F		
Vibration	All	MIL-STD-	-810F		
Relative humidity	All	5		95	% RH

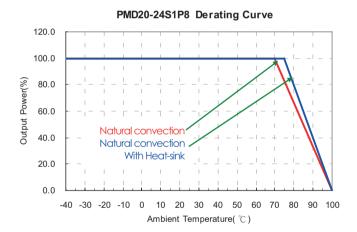
*Test condition with vertical direction by natural convection (20LFM)

** Heat-sink is optional and P/N: 7G-0020C-F.

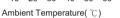

EMC Characteristics

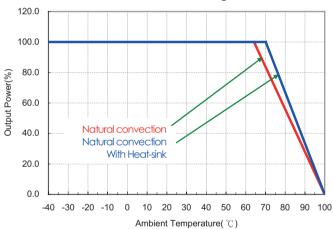
Parameters	Standard	Condition		Level
EMI*	EN55022			Class A
ESD	EN61000-4-2	Air	±8kV	Perf. Criteria A
		Contact	±6kV	
Radiated Immunity	EN61000-4-3		10V/m	Perf. Criteria A
Fast transient**	EN61000-4-4		±2kV	Perf. Criteria A
Surge**	EN61000-4-5		±1kV	Perf. Criteria A
Conducted immunity	EN61000-4-6		10V r.m.s	Perf. Criteria A
Power frequency magnetic field	EN61000-4-8	100A/m co	ntinuous;	Perf. Criteria A
		1000A/m 1	second	

*The T20A series can meet EN55022 Class A with parallel an external capacitor to the input pins. Recommend: 12VDC input : 4.7μF/50V 1812 MLCC. 24 VDC input : 2.2μF/50V 1812 MLCC. 48 VDC input 2.2μF/100V 1812 MLCC. **An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5. The filter capacitor Powerbox suggest: Nippon chemi-con KY series, 220μF/100V, ESR 48mΩ.


Thermal Consideration

The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point as the figure below. The temperature at this location should not exceed 100°C. When operating, adequate cooling must be provided to maintain the test point temperature at or below 100°C. Although the maximum point temperature of the power modules is 100°C, you can limit this Temperature to a lower value for extremely high reliability.




Measurement shown in inch(mm) TOP VIEW

Following are de-rating curve for PMD20-24S1P8, PMD20-48S05, PMD20-48S15.

PMD20-48S05 Derating Curve

PMD20-48S15 Derating Curve

Output Over Current Protection

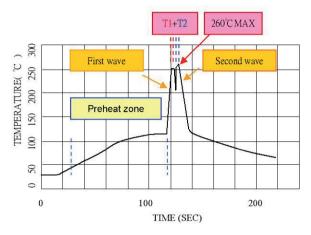
When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 150 percent of rated current for T20A-S SERIES.

Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an overcurrent fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods.

One of the problems resulting from over current is that excessive heat may be generated in power devices; especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged.

The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally; otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.

The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected; or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an over-current event is detected; or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices.

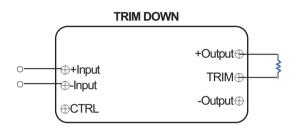

Short Circuit Protection

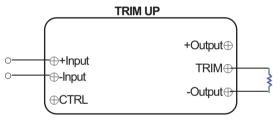
Continuous, hiccup and auto-recovery mode.

During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition.

Soldering and Reflow Considerations

Lead free wave solder profile for T20A DIP type


Zone	Reference Parameter
Preheat zone	Rise temp. speed : 3°C / sec max.
	Preheat temp. : 100~130°C
Actual heating	Peak temp. : 250~260°C
	Peak time (T1+T2 time) : 4~6 sec


Reference Solder : Sn-Ag-Cu , Sn-Cu

Hand Welding: Soldering iron : Power 90W Welding Time : 2~4 sec Temp. : 380~400°C

External Trim Adjustment

Output voltage set point adjustment allows the user to increase or decrease the output voltage set point of a module. This is accomplished by connecting an external resistor between the TRIM pin and either the +OUTPUT or -OUTPUT pins. With an external resistor between the TRIM and +OUTPUT pin, the output voltage set point decreases. With an external resistor between the TRIM and -OUTPUT pin, the output voltage set point increases. The external TRIM resistor needs to be at least 1/16W resistors.

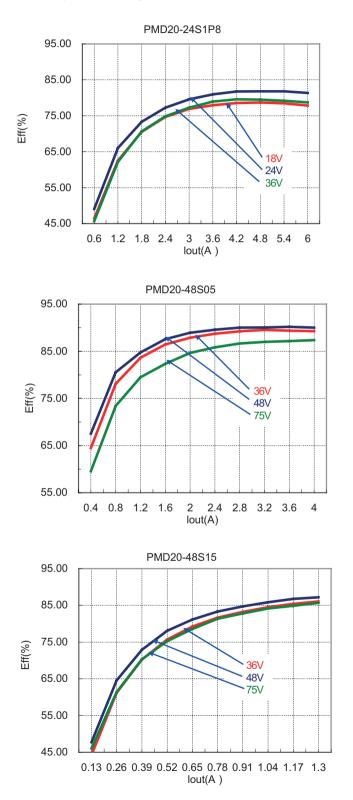
EXTERNAL OUTPUT TRIMMING

Trim Table

PMD20-DDS1P5

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	1.485	1.470	1.455	1.440	1.425	1.410	1.395	1.380	1.365	1.350	Volts
Rx=	5.704	2.571	1.527	1.005	0.692	0.483	0.334	0.222	0.135	0.065	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	1.515	1.530	1.545	1.560	1.575	1.590	1.605	1.620	1.635	1.650	Volts

PMD20-DDS1P8

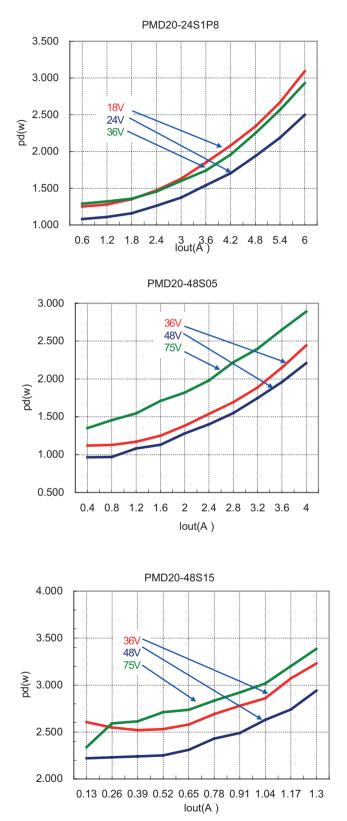

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	1.782	1.764	1.746	1.728	1.710	1.692	1.674	1.656	1.638	1.620	Volts
Rx=	14.66	6.57	3.874	2.525	1.716	1.177	0.792	0.503	0.278	0.098	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Trim up Vout=	1 1.818	2 1.836	3 1.854	4 1.872	5 1.89	6 1.908	7 1.926	8 1.944	9 1.962	10 1.98	% Volts

PMD20-DDS2P5

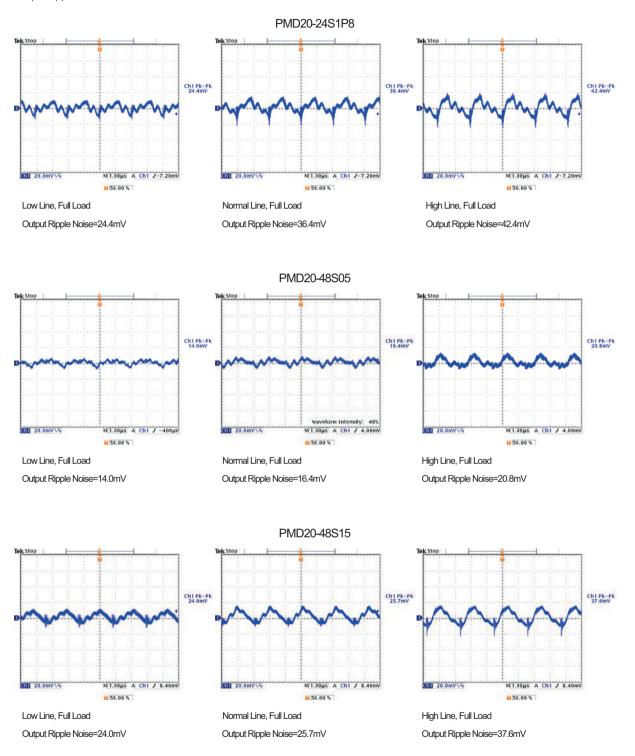
PMD20-	2P5										
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	2.475	2.450	2.425	2.400	2.375	2.350	2.325	2.300	2.275	2.250	Volts
Rx=	49.641	22.481	13.428	8.902	6.186	4.375	3.082	2.112	1.358	0.754	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	2.525	2.550	2.575	2.600	2.625	2.650	2.675	2.700	2.725	2.75	Volts
Rx=	37.076	16.675	9.874	6.474	4.434	3.074	2.102	1.374	0.807	0.354	K Ohms
PMD20-DDS	3P3										
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	3.267	3.234	3.201	3.168	3.135	3.102	3.069	3.036	3.003	2.970	Volts
Rx=	69.470	31.235	18.490	12.117	8.294	5.745	3.924	2.559	1.497	0.647	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	3.333	3.366	3.399	3.432	3.465	3.498	3.531	3.564	3.597	3.630	Volts
Rx=	57.930	26.165	15.577	10.283	7.106	4.988	3.476	2.341	1.459	0.753	K Ohms
PMD20-DDS	05										
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	4.950	4.900	4.850	4.800	4.750	4.700	4.650	4.600	4.550	4.500	Volts
Rx=	45.533	20.612	12.306	8.152	5.660	3.999	2.812	1.922	1.230	0.676	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	5.050	5.100	5.150	5.200	5.250	5.300	5.350	5.400	5.450	5.500	Volts
Rx=	36.570	16.580	9.917	6.585	4.586	3.253	2.302	1.588	1.032	0.588	K Ohms
PMD20-DDS											
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	11.880	11.760	11.640	11.520	11.400	11.280	11.160	11.040	10.920	10.800	Volts
Rx=	460.990	207.950	123.600	81.423	56.118	39.249	27.199	18.162	11.132	5.509	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	12.120	12.240	12.360	12.480	12.600	12.720	12.840	12.960	13.080	13.200	Volts
Rx=	367.910	165.950	98.636	64.977	44.782	31.318	21.701	14.488	8.879	4.391	K Ohms
PMD20-	15										
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	14.850	14.700	14.550	14.400	14.250	14.100	13.950	13.800	13.650	13.500	Volts
Rx=	499.820	223.410	131.270	85.204	57.563	39.136	25.974	16.102	8.424	2.282	K Ohms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	15.150	15.300	15.450	15.600	15.750	15.900	16.050	16.200	16.350	16.500	Volts
Rx=	404.180	180.590	106.060	68.796	46.437	31.531	20.883	12.898	6.687	1.718	K Ohms

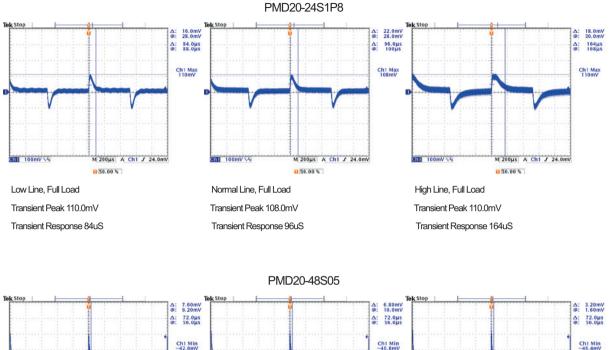
Efficiency

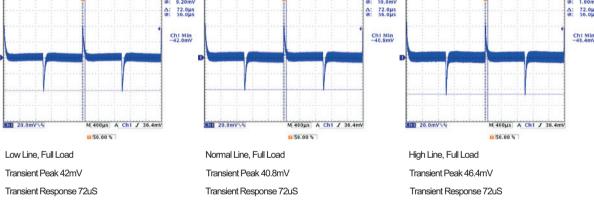
a. Efficiency with load change under different line condition at room temperature



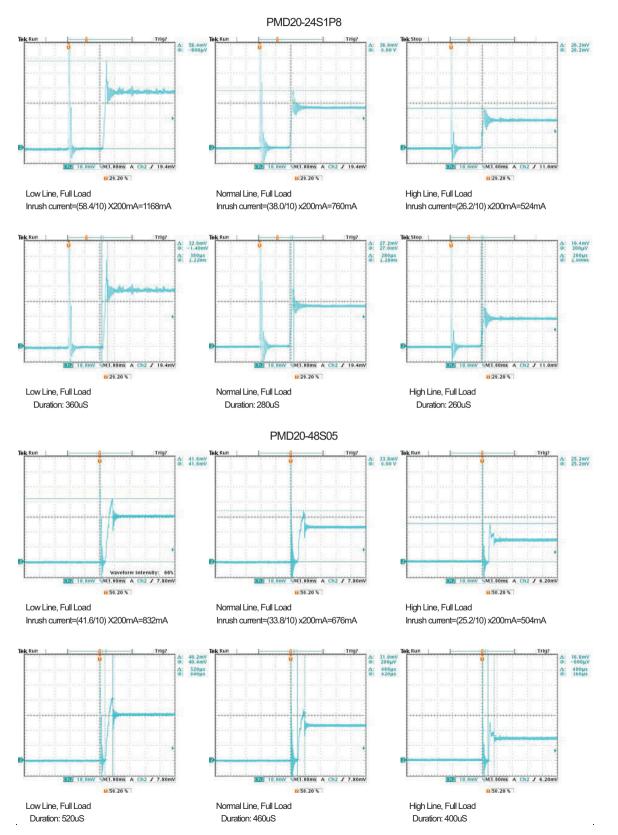
Efficiency

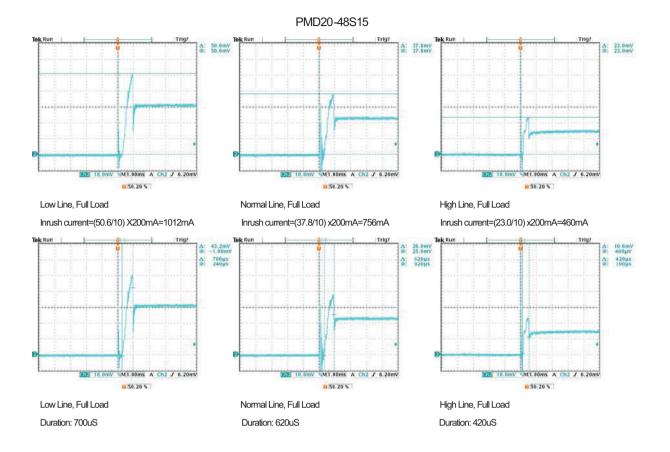

a. Efficiency with line change under different line condition at room temperature

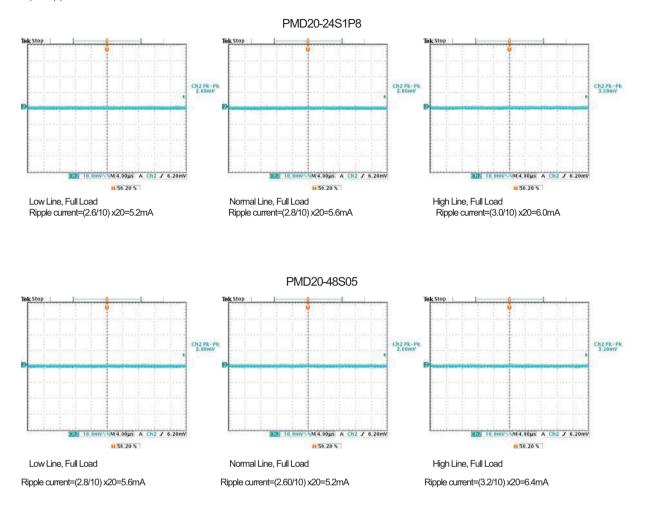

Power dissipation curve

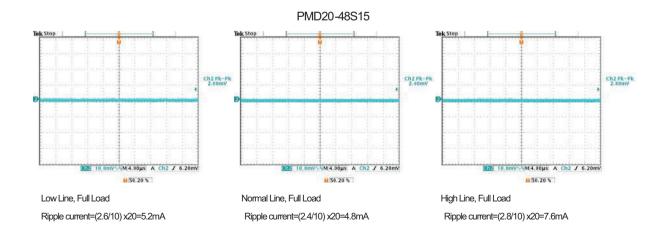


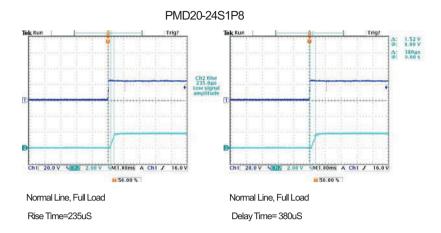

Output ripple & noise


Transient peak and response

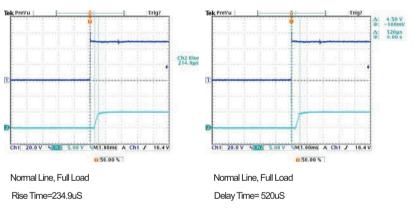


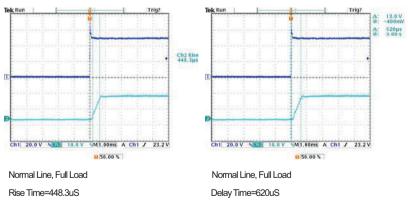


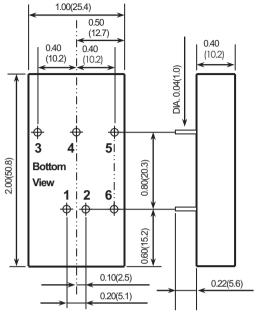

Inrush current



Input ripple current

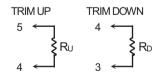



Delay time and raise time


PMD20-48S05

PMD20-48S15

Mechanical Drawing


1. All dimensions in Inch (mm) 2. Pin pitch tolerance ±0.0014(0.35) 3. Tolerance : x.xx±0.02 (x.x±0.5) x.xxx±0.01 (x.xx±0.25)

Pin Connection

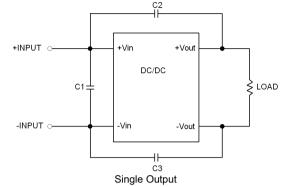
Pin	Define
1	+INPUT
2	-INPUT
3	+OUTPUT
4	TRIM
5	-OUTPUT
6	CTRL (option)
-	

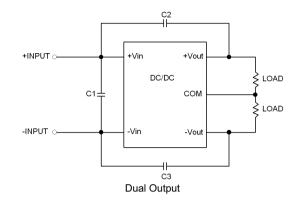
External Output Trimming

Output can be externally trimmed by using the method shown below:

Safety and Installation Instruction Isolation consideration

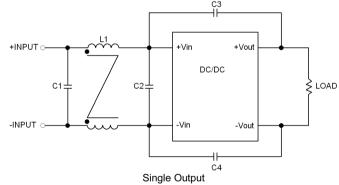
The T20A series features 1.6k Volt DC isolation from input to output, input to case, and output to case. The input to output resistance is greater than 10⁹ ohms. Nevertheless, if the system using the power module needs to receive safety agency approval, certain rules must be followed in the design of the system using the model. In particular, all of the creepage and clearance requirements of the end-use safety requirement must be observed. These documents include UL-60950-1, EN60950-1 and CSA 22.2-960, although specific applications may have other or additional requirements.

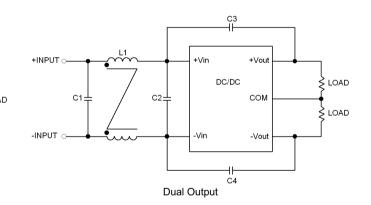

Fusing Consideration


Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of a sophisticated power architecture. To maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a slow-blow fuse with maximum rating of 3 A. Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer's data for further information.

MTBF and Reliability

The MTBF of T20A-S series of DC/DC converters has been calculated using MIL-HDBK-217F, Ta = 25°C, FULL LOAD. The resulting figure for MTBF is 1.583× 10⁶ hours.


Recommended external EMI filter for EN55022 Class A



Model	C1	C2	C3
PMD20-12	4.7µF/50V	1000pF/2kV	1000pF/2kV
	1812 MLCC	1808 MLCC	1808 MLCC
PMD20-24	2.2µF/50V	1000pF/2kV	1000pF/2kV
	1812 MLCC	1808 MLCC	1808 MLCC
PMD20-48	2.2µF/100V	1000pF/2kV	1000pF/2kV
	1812 MLCC	1808 MLCC	1808 MLCC

Recommended external EMI filter for EN55022 Class B

Model	C1	C2	C3, C4	L1	
PMD20-12	3.3µF/50V	3.3µF/50V	1000pF/2kV	450µH	
	1812 MLCC	1812 MLCC	1808 MLCC	Common Choke	
				PMT-048	
PMD20-24	4.7µF/50V	N/A	1000pF/2kV	450µH	
	1812 MLCC		1808 MLCC	Common Choke	
				PMT-048	
PMD20-48	2.2µF/100V	2.2µF/100V	1000pF/2kV	325µH	
	1812 MLCC	1812 MLCC	1808 MLCC	Common Choke	
				PMT-050	