P R B X

Table of Contents	
Output specification	P2
Input specification	P3
General specification	P3
Environmental specifications	P4
Remote on/off control	P5
Thermal consideration	P5
Output over current protection	P6
Short circuitry protection	P6
Solder, clearing, and drying considerations	P6
Characteristic curve	P7
Mechanical data	P15
Safety and installaion instruction	P15
MTBF and reliability	P15
Recommended external EMI filter	P16

Introduction

The T15-dual series offer 15 watts of output power from a $2.00 \times 1.00 \times 0.40$ inch package. The T15-dual series with 2:1 wide input voltage of 9~18VDC, 18~36VDC and 36~75VDC.

DC/DC Converter Features

Low profile 2.00 x 1.00 x 0.40 inch
2:1 wide input voltage range
15 watts maximum output
Input to output isolation 1600VDC
Operating case temperature range 100°C max.
Over-current protection
Output over voltage protection
ISO 9001 certified manufacturing facilities
UL60950-1, EN60950-1 and IEC60950-1 licensed
CE mark meet 2006/95/EC, 93/68/EEC and 2004/108/EC
RoHS directive compliant

Option

Positive logic and negative logic remote on/off

POWERBOX Industrial Line T15 Series 15W 2:1 Dual Output DC/DC Converter Manual

Output Specifications

Parameters	Model	Min	Тур	Max	Unit
Output voltage (Vin(nom); full load; Ta=25°C)	D D05	4.95	5.00	5.05	VDC
	D D12	11.88	12.00	12.12	VDC
	D D15	14.85	15.00	15.15	VDC
Line regulation (LL to HL at full load)	All	-0.5		+0.5	%
Load regulation (min to 100% full load)	All	-1		+1	%
Cross regulation asymmetrical 25%/100% full load	All			5	%
Output ripple and noise (20MHz bandwidth)	All		75	100	mVp-p
Temperature coefficient	All	-0.02		+0.02	%/°C
Output voltage overshoot (Vin(min) to Vin(max) full load; Ta=25°C)	All			5	% of Vout
Dynamic load response (Vin(nom); Ta=25°C)					
Load step change from 75% to 100% or 100 to 75% of full load					
Peak deviation	All		250		mV
Setting time (Vo<10% peak deviation)	All		250		μs
Output current	D D05	0		±1500	mA
	D 12	0		±625	mA
	12D15	±10		±500	mA
	24D15	0		±500	mA
	48D15	0		±500	mA
Output over voltage protection (zener diode clamp)	D D05		6.2		VDC
	D 12		15		VDC
	DD15		18		VDC
Output over current protection	All		150		% of FL
Output short circuit protection	All	Hiccups, a	utomatics recove	ery	
Output capacitor load	DD05			±1020	μs
	D 12			±495	μs
	D D15			±165	μs

Input Specifications

Parameters	Model	Min	Тур	Max	Unit
Operating input voltage	12D	9	12	18	VDC
	24D	18	24	36	VDC
	48D	36	48	75	VDC
Input reflected ripple current	All		20		mAp-p
Start up time (nominal input and constant resistive load power up)	All		20	50	mS
Remote on/off					
Negative logic					
DC/DC On	All	0		1.2	VDC
DC/DC Off	All	3.5		12	VDC
Positive logic					
DC/DC On	All	3.5		12	VDC
DC/DC Off	All	0		1.2	VDC
Input voltage					
Continuous	12D			18	VDC
	24D			36	VDC
	48D			75	VDC
Transient (100mS maximum)	12D			36	VDC
	24D			50	VDC
	48D			100	VDC

General Specifications

Parameters	Model	Min	Тур	Max	Unit
Efficiency, test at Vin, nom and full load	12D05		83		%
	12D12		86		%
	12D15		84		%
	24D05		84		%
	24D12		86		%
	24D15		86		%
	48D05		85		%
	48D12		88		%
	48D15		87		%
Isolation resistance	All	10 ⁹			Ω
Isolation capacitance	All			300	pF
Switching frequency	All		300		kHz
Weight	All		27		g
MTBF MIL-HDBK-217F	All		2.318 x 10	ე6	hours
Isolation voltage (1 minute)					
Input to output	All	1600			VDC
Input to case	All	1600			VDC
Output to case	All	1600			VDC
Case material	All	Nickel-co	ated copper		
Base material	All	Non-cond	ductive black pla	stic	
Potting material	All	Epoxy (UL	_94 V-0)		
Dimensions	All	50.8 x 25.	4 x 10.2 mm (2.0	00 x 1.00 x 0.40 in	ch)

Environmental Specifications

Parameters	Model	Min	Тур	Max	Unit
Operating case temperature (with derating)*	All	-40		85	°C
Maximum case temperature	All			100	°C
Storage temperature range	All	-55		105	°C
Thermal impedance**					
Natural convection	All		12		°C/W
Natural convection with heat-sink	All		10		°C/W
Thermal shock	All	MIL-STD-	810F		
Vibration	All	MIL-STD-	810F		

*Test condition with vertical direction by natural convection (20LFM)

** Heat-sink is optional and P/N: 7G-0020C-F.

EMC Characteristics

Parameters	Standard	Condition		Level
EMI*	EN55022			Class A
ESD	EN61000-4-2	Air	±8kV	Perf. Criteria A
		Contact	±6kV	
Radiated Immunity	EN61000-4-3		10V/m	Perf. Criteria A
Fast transient**	EN61000-4-4		±2kV	Perf. Criteria A
Surge**	EN61000-4-5		±1kV	Perf. Criteria A
Conducted immunity	EN61000-4-6		10V r.m.s	Perf. Criteria A
Power frequency magnetic field	EN61000-4-8	100A/m cor	ntinuous;	Perf. Criteria A
		1000A/m 1	second	

* The T15 series can meet EN55022 Class A with parallel an external capacitor to the input pins. Recommend: 12VDC input : 6.8µF/50V 1812 MLCC . 24VDC input : 2.2µF/50V 1812 MLCC . 48VDC input: 1.5µF/100V 1812 MLCC.

**An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5.

The filter capacitor Powerbox suggest: Nippon chemi-con KY series, 220μF/100V, ESR 48mΩ.

Remote On/Off Control

The Remote CTRL pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch must be capable of sinking up to 0.5 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is allowable leakage current of the switch at 12V is 0.5mA.

Remote On/Off implementation circuits

Isolated-Closure Remote ON/OFF

Level Control Using TTL Output

Level Control Using Line Voltage

There is one remote control available, positive logic. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and low-level logic is turned off it.

SW

When T15-S module is turned off at High-level logic

Thermal Consideration

The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding Environment. Proper cooling can be verified by measuring the point as the figure below. The temperature at this location should not exceed 100°C. When Operating, adequate cooling must be provided to maintain the test point temperature at or below 100°C. Although the maximum point Temperature of the power modules is 100°C, you can limit this Temperature to a lower value for extremely high reliability.

Following are de-rating curve for PMD15-12D05, PMD15-24D12, PMD15-48D12.

Ambient Temperature(°C)

at Low-level logic

Ambient Temperature(°C)

Output Over Current Protection

When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 150 percent of rated current for T1515-D SERIES.

Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an overcurrent fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods.

One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged.

The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.

The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an over-current event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices.

Short Circuit Protection

Continuous, hiccup and auto-recovery mode.

During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition.

Soldering and Reflow Considerations

Lead free wave solder profile for T15-D DIP type

Zone	Reference Parameter
Preheat zone	Rise temp. speed : 3°C / sec max.
	Preheat temp. : 100~130°C
Actual heating	Peak temp. : 250~260°C
	Peak time (T1+T2 time) : 4~6 sec

Reference Solder : Sn-Ag-Cu , Sn-Cu Hand Welding : Soldering iron : Power 90W Welding Time : 2~4 sec Temp. : 380~400°C

Efficiency

a. Efficiency with load change under different line condition at room temperature

b. Efficiency with line change under different load condition at room temperature

Power dissipation curve

Output ripple & noise

Normal Line, Full Load

M 2.00µs A Ch1 J 60.0mV

ii+* 0.00000 s

-12V=11.6mV

3 20.0mV

High Line, Full Load

M 2.00µs A Ch1 J 60.0mV

ii+* 0.00000 s

-12V=13.2mV

20.0mV \

PMD15-12D05

311 20.0mV

Low Line, Full Load

M 2.00µs A Ch1 J 60.0mV

ii+* 0.00000 s

-12V=10.4mV

Transient peak and response

PMD15-48D15

Inrush current

Inrush current=(50.6/10) X200mA=1012mA Duration: 1.43mS

Inrush current=(37.8/10) x200mA=756mA Duration: 1.27mS

www.prbx.com

Input ripple current

Delay time and rise time

PMD15-24D12

PMD15-48D15

www.prbx.com

Mechanical Drawing

2. Pin pitch tolerance \pm 0.0014(0.35)

Pin Connection

Pin	Define	
1	+ Input	
2	- Input	
3	+ Output	
4	Common	
5	- Output	
6	CTRL (Option)	

Safety and Installation Instruction Isolation consideration

The T15 series features 1.6k Volt DC isolation from input to output, input to case, and output to case. The input to output resistance is greater than 109 ohms. Nevertheless, if the system using the power module needs to receive safety agency approval, certain rules must be followed in the design of the system using the model. In particular, all of the creepage and clearance requirements of the end-use safety requirement must be observed. These documents include UL-60950-1, EN60950-1 and CSA 22.2-960, although specific applications may have other or additional requirements.

Fusing Consideration

Caution: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of a sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a slow-blow fuse with maximum rating of 6.3 A. Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse manufacturer's data for further information.

Minimum Load Requirement

10%(of full load) minimum load required. The 10% minimum load requirement is in order to meet all performance specifications. The T15 Series does not properly maintain regulation and operate with no load condition. The output voltage drops off about 10%.

MTBF and Reliability

The MTBF of T15-D series of DC/DC converters has been calculated using MIL-HDBK-217F, Ta = 25°C, FULL LOAD. The resulting figure for MTBF is 2.318× 10⁶ hours.

^{3.} Tolerance : x.xx \pm 0.02 (x.x \pm 0.5)

Model	C1	C2	C3
PME15-12	6.8µF/50V	1000pF/2kV	1000pF/2kV
	1812 MLCC	1808 MLCC	1808 MLCC
PME15-24	2.2µF/50V	1000pF/2kV	1000pF/2kV
	1812 MLCC	1808 MLCC	1808 MLCC
PME15-48	1.5µF/100V	1000pF/2kV	1000pF/2kV
	1812 MLCC	1808 MLCC	1808 MLCC

Recommended external EMI filter for EN55022 Class B

Model	C1	C2	C3, C4	L1	
PME15-12	4.7µF/50V	N/A	1000pF/2kV	325µH	
	1812 MLCC		1808 MLCC	Common Shoke PMT-050	
PME15-24	3.3µF/50V	N/A	1000pF/2kV	325µH	
	1812 MLCC		1808 MLCC	Common Shoke PMT-050	
PME15-48	2.2µF/100V	2.2µF/100V	1000pF/2kV	325µH	
	1812 MLCC	1812 MLCC	1808 MLCC	Common Shoke PMT-050	