

Table of Contents	
Output specification	P2
Input specification	P3
General specification	P4
Environmental specifications	P5
EMC characteristic curves	P6
Output voltage adjustment	P36
Input source impedance	P38
Output over current protection	P38
Output short circuitry protection	P38
Output over voltage protection	P38
Thermal considerations	P39
Heat sink considerations	P39
Remote on/off control	P40
EMS considerations	P41
Mechanical data	P41
Recommended pad layout	P41
Soldering considerations	P41
Packaging information	P42
Safety and installaion instruction	P42
MTBF and reliability	P42
Recommended external EMI filter	P42

Introduction

PMF20 single output DC/DC converters provide up to 20 watts of output power in an industry standard package and footprint. These units are specifically designed to meet the power needs of low profile. All models feature with 2:1 wide input voltage of 9~18 VDC, 18~36 VDC and 36~75VDC, comprehensively protected against over-current, overvoltage and input under-voltage protection conditions, and adjustable output voltage.

POWERBOX Industrial Line PMF20 Series 20W 2:1 Single Output DC/DC Converter Manual

DC/DC Converter Features

20 Watts maximum output power
Single output current up to 4.5A
Industry standard pin-out
Small size and low profile: 1.0 x 1.0 x 0.39 inch
High efficiency up to 92%
2:1 wide input voltage range
Six-sided continuous shield
Meet EN55022 class A without external components
Fixed switching frequency
Input to output isolation 1600 VDC
No minimum load required
Input under voltage protection
Output over voltage protection
Output over current protection
Output short circuit protection
Remote on/off control
Adjustable output voltage
Compliant to RoHS II & REACH

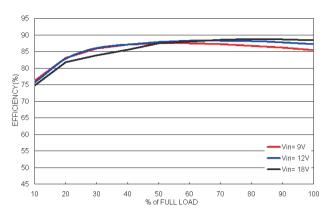
Output Specifications

Parameters	Model	Min	Тур	Max	Unit
Output voltage (Vin(nom); full load; Ta=25°C)	□□S3P3	3.267	3.3	3.333	VDC
	□□S05	4.95	5	5.05	VDC
	□□S12	11.88	12	12.12	VDC
	□□S15	14.85	15	15.15	VDC
	□□S24	23.76	24	24.24	VDC
Output regulation					
Line (Vin(min) to Vin(max); full load)	All	-0.2		+0.2	%
Load (0% to 100% of full load)	All	-0.2		+0.2	%
Load (10% to 90% of full load)	All	-0.1		+0.1	%
Output ripple and noise					
Peak to peak (20MHz bandwidth)	□□S3P3				
	□□S05				
With a 1µF X7R MLCC and a 10µF T/C	□□S12		75	100	mVp-p
	□□S15				
With 2 pcs of 6.8µF/50V X7R MLCC	□□S24				
Voltage adjustability	□□S3P3	-10		+10	% of Vout
• , ,	□□S05	-10		+10	% of Vout
	□□S12	-10		+10	% of Vout
	□□S15	-10		+10	% of Vout
	□□S24	-10		+20	% of Vout
Temperature coefficient	All	-0.02		+0.02	%/°C
Output voltage overshoot (Vin(min) to Vin(max) full load; Ta=25°C)	All			5	% of Vout
Dynamic load response (Vin(nom); Ta=25°C)					
Load step change from 75% to 100% or 100 to 75% of full load					
Peak deviation	All		350		mV
Setting time (Vo<10% peak deviation)	All		250		μs
Output current	□□S3P3	0		4500	mA
·	□□S05	0		4000	mA
	□□S12	0		1670	mA
	□□S15	0		1330	mA
	□□S24	0		833	mA
Output capacitance load	□□S3P3			7000	μF
	□□S05			5000	μF
	□□S12			850	μF
	□□S15			700	μF
	□□S24			220	μF
Output over voltage protection (voltage clamped)	□□S3P3	3.7		5.4	VDC
	□□S05	5.6		7.0	VDC
	□□S12	13.5		19.6	VDC
	□□S15	16.8		20.5	VDC
	□□S24	29.1		32.5	VDC
Output over current protection	All		150		% of FL
Output short circuit protection	All	0 ''	s, automatics re		

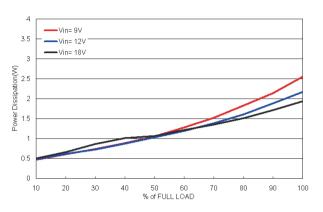
Input Specifications

Parameters	Model	Min 7	Гур	Max	Unit
Operating input voltage					
Continuous	12S□□	9 1	L2	18	VDC
	24S□□	18 2	24	36	VDC
	48S□□	36	18	75	VDC
Transient (1sec, max)	12S□□			25	VDC
	24S□□			50	VDC
	48S□□			100	VDC
Input standby current (Typ. value at Vin(nom); no load)	12S3P3	1	LO		mA
	12S05	1	LO		mA
	12S12	1	LO		mA
	12S15	1	LO		mA
	12S24	1	L2		mA
	24S3P3	1	LO		mA
	24S05	1	LO		mA
	24S12	6	3		mA
	24S15	6	3		mA
	24S24	1	LO		mA
	48S3P3	1	LO		mA
	48S05	1	LO		mA
	48S12	4	1		mA
	48S15	4	1		mA
	48S24	3	3		mA
Under voltage lockout turn-on threshold	12S□□			9	VDC
	24S□□			18	VDC
	48S□□			36	VDC
Under voltage lockout turn-off threshold	12S□□	8	3		VDC
	24S□□	1	L6		VDC
	48S□□	3	33		VDC
Input reflected ripple current (5 to 20MHz, 12µH source impedance)	All	3	30		mAp-p
Start up time (Vin(nom) and constant resistive load)					
Power up	All			30	ms
Remote on/off	All			30	ms
Remote ON/OFF control (The Ctrl pin voltage is referred to -INPUT)					
Positive logic (option)					
On/Off pin high voltage (remote ON)	□□S□□-A	Open or 3 ~ 15V	DC		
On/Off pin low voltage (remote OFF)	□□S□□-E	Short or 0 ~ 1.2V	/DC		
Negative logic (standard)					
On/Off pin low voltage (remote ON)		Short or 0 ~ 1.2V	/DC		
On/Off pin high Vvltage (remote OFF)	□□S□□-C	Open or 3 ~ 15V	DC		
Input current of remote control pin		-0.5		1.0	mA
Remote off state input current			2.0		mA

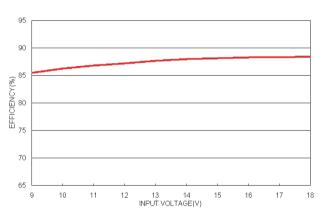
General Specifications

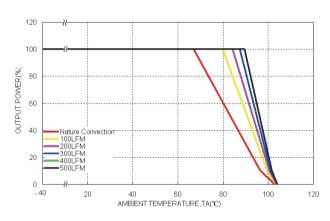

Parameters	Model	Min	Тур	Max	Unit
Efficiency (Vin(nom), full load; Ta=25°C)	12S3P3		89		%
	12S05		89		%
	12S12		89		%
	12S15		89		%
	12S24		90		%
	24S3P3		90		%
	24S05		91		%
	24S12		90		%
	24S15		91		%
	24S24		92		%
	48S3P3		90		%
	48S05		90		%
	48S12		90		%
	48S15		90		%
	48S24		91		%
solation voltage (1 minute)					
nput to output	All	1600			VDC
nput to case, output to case	All	1000			VDC
solation resistance (500VDC)	All	1			GΩ
solation capacitance	All			1500	pF
Switching frequency	□□S3P3	248	275	303	kHz
	□□S05				kHz
	□□S12				kHz
	□□S15	297	330	363	kHz
	□□S24				kHz
Weight	All		15		g
MTBF MIL-HDBK-217F	All		1.477 x 10	6	hours
Safety approvals	All	UL60950-	-1, EN60950-1, I	EC60950-1	
Case material	All	Nickel-coa	ated copper		
Base material	All	FR4 PCB			
		Silicone (UL94-V0)			

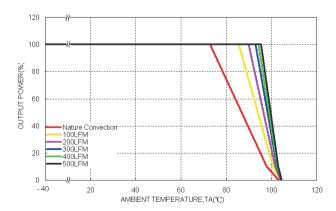
Environmental Specifications

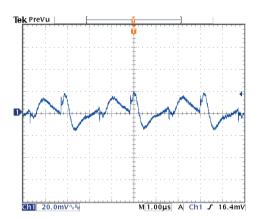

Parameters	Model	Min	Тур	Max	Unit
Operating case temperature					
Without derating	All	-40		60	°C
With derating	All	60		101	°C
Storage temperature	All	-55		125	°C
Max case temperature	All			105	°C
Thermal impedance (natural convection with vertical direction)					
Without heat-sink	All		17.6		°C/W
With heat-sink	All		14.8		°C/W
Relative humidity	All	5		95	% RH
Thermal shock	All	MIL-STD-	-810F		
Vibration	All	MIL-STD-	-810F		

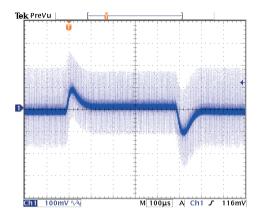
EMC Characteristics

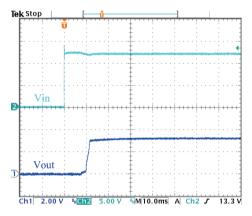

Parameters	Standard	Condition		Level
EMI	EN55022	Module star	nd-alone	Class A
		With extern	al input filter	Class B
ESD	EN61000-4-2	Air	±8kV	Perf. Criteria A
		Contact	±6kV	
Radiated Immunity	EN61000-4-3		10V/m	Perf. Criteria A
Fast transient	EN61000-4-4		±2kV	Perf. Criteria A
Surge	EN61000-4-5		±2kV	Perf. Criteria A
Conducted immunity	EN61000-4-6		10V r.m.s	Perf. Criteria A
Power frequency magnetic field	EN61000-4-8	100A/m cor	ntinuous;	Perf. Criteria A
		1000A/m 1	second	

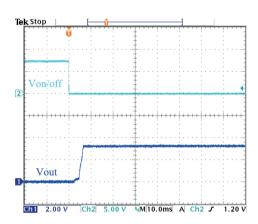

Efficiency versus Output Current

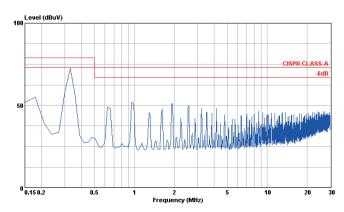

Power Dissipation versus Output Current

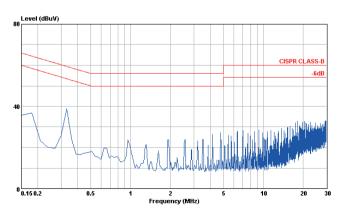

Efficiency versus Input Voltage Full Load

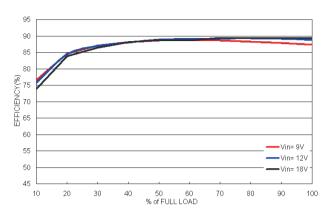

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

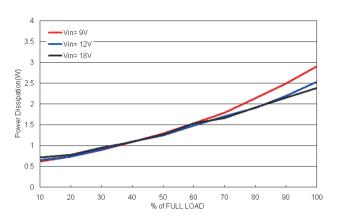

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

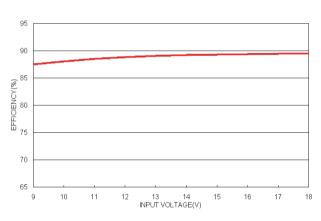

Typical Output Ripple and Noise. Vin(nom); Full Load

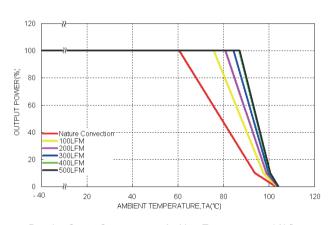

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

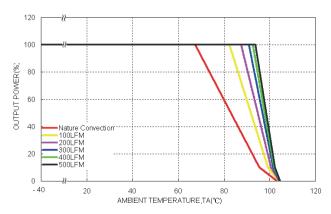

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

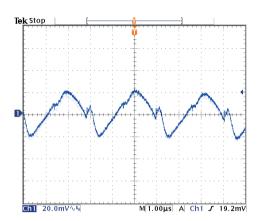

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

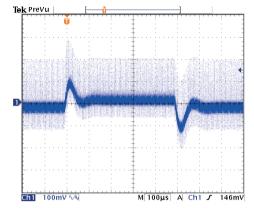

Conduction Emission of EN55022 Class A Vin(nom); Full Load

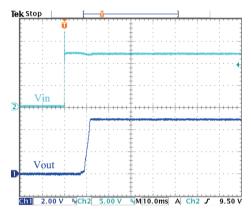

Conduction Emission of EN55022 Class B Vin(nom); Full Load

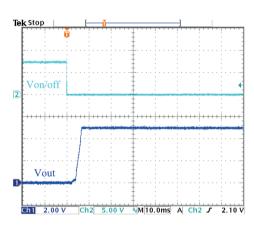

Efficiency versus Output Current

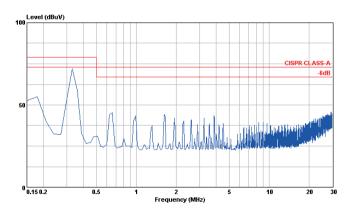

Power Dissipation versus Output Current

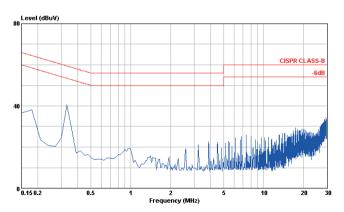

Efficiency versus Input Voltage Full Load

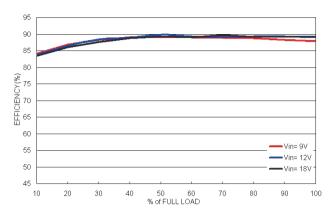

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

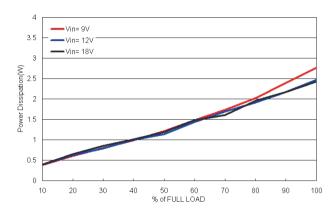

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

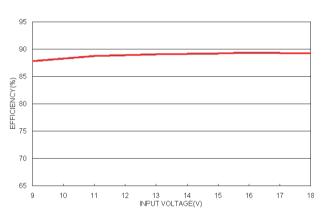

Typical Output Ripple and Noise. Vin(nom); Full Load

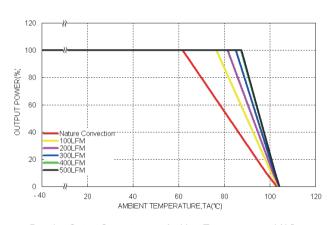

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

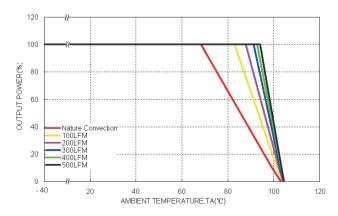

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

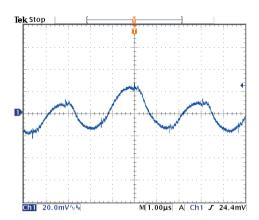

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

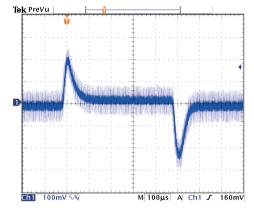

Conduction Emission of EN55022 Class A Vin(nom); Full Load

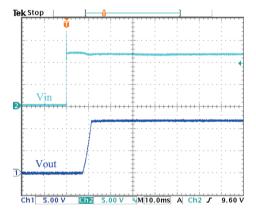

Conduction Emission of EN55022 Class B Vin(nom); Full Load

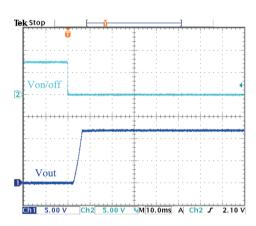

Efficiency versus Output Current

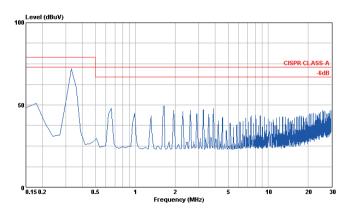

Power Dissipation versus Output Current

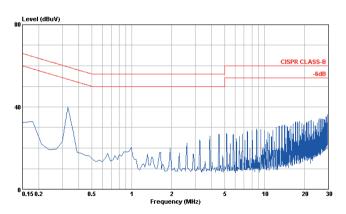

Efficiency versus Input Voltage Full Load

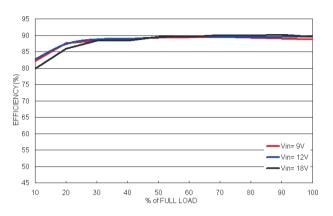

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

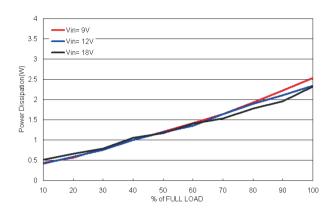

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

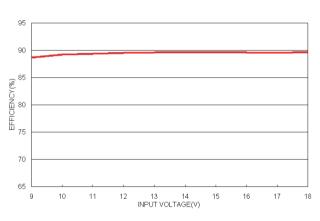

Typical Output Ripple and Noise. Vin(nom); Full Load

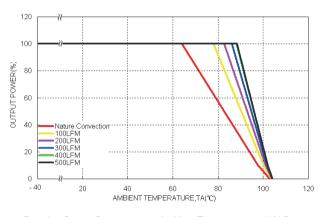

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

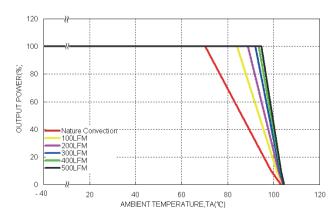

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

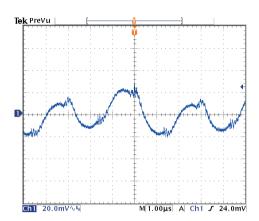

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

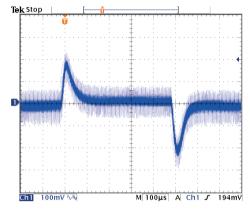

Conduction Emission of EN55022 Class A Vin(nom); Full Load

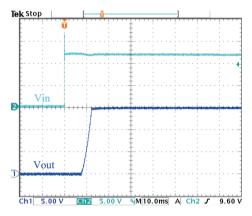

Conduction Emission of EN55022 Class B Vin(nom); Full Load


Efficiency versus Output Current

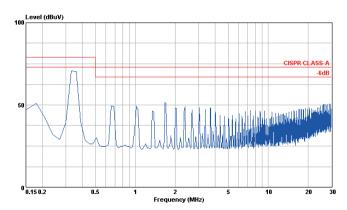

Power Dissipation versus Output Current

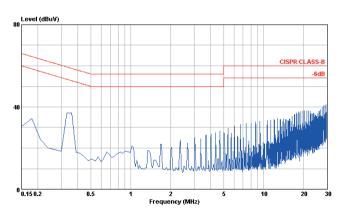

Efficiency versus Input Voltage Full Load

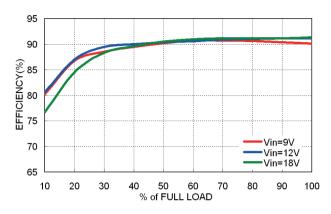

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

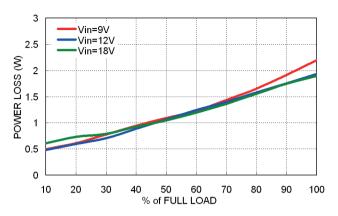

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

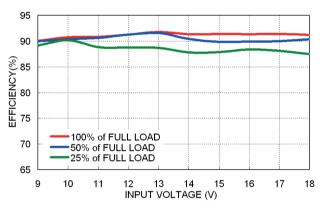
Typical Output Ripple and Noise. Vin(nom); Full Load

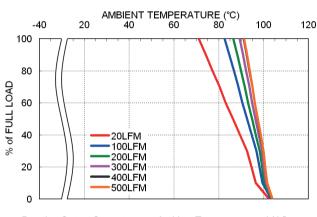

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)


Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

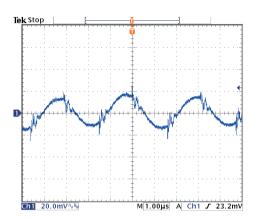

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

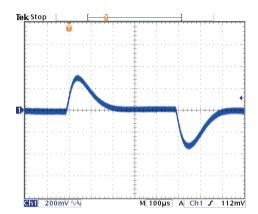

Conduction Emission of EN55022 Class A Vin(nom); Full Load

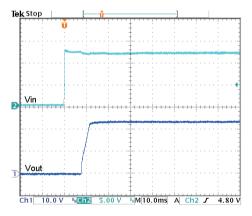

Conduction Emission of EN55022 Class B Vin(nom); Full Load

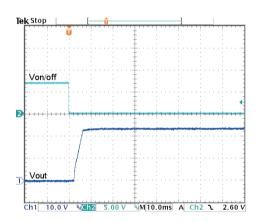

Efficiency versus Output Current

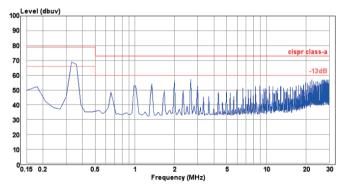
Power Dissipation versus Output Current

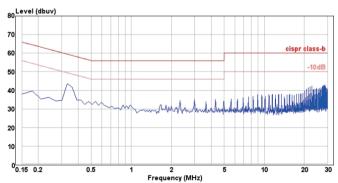

Efficiency versus Input Voltage Full Load

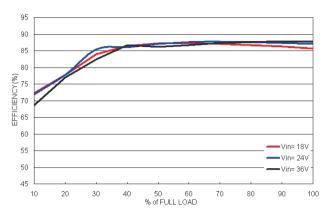

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

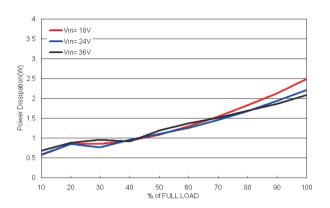

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

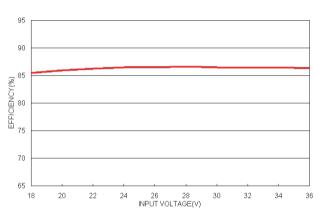

Typical Output Ripple and Noise. Vin(nom); Full Load

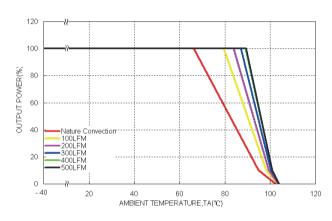

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

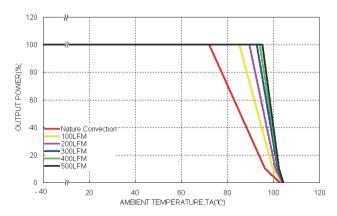

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

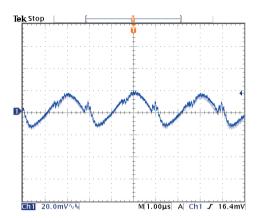

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

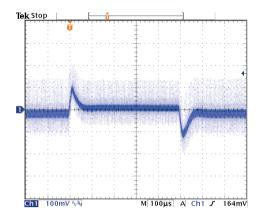

Conduction Emission of EN55022 Class A Vin(nom); Full Load

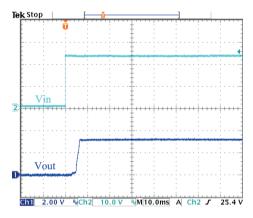

Conduction Emission of EN55022 Class B Vin(nom); Full Load

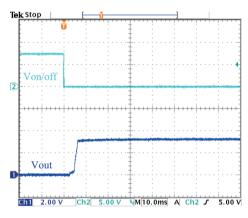

Efficiency versus Output Current

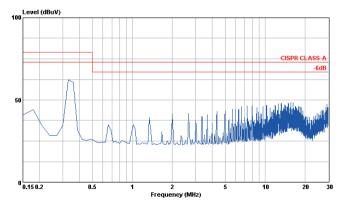

Power Dissipation versus Output Current

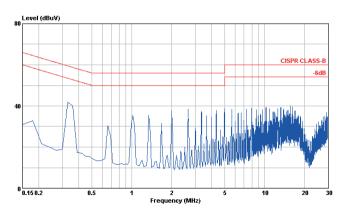

Efficiency versus Input Voltage Full Load

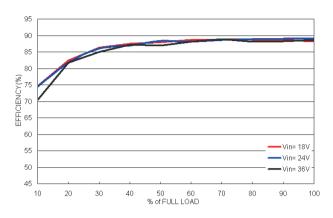

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

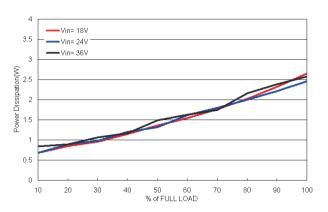

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

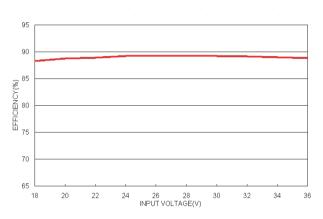

Typical Output Ripple and Noise. Vin(nom); Full Load

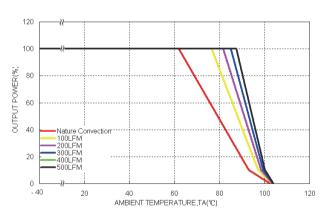

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

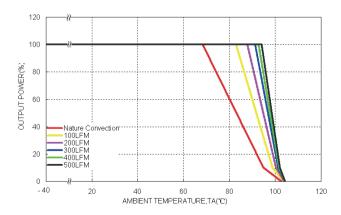

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

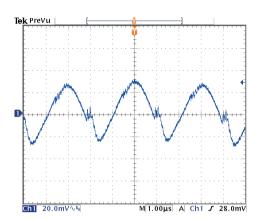

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

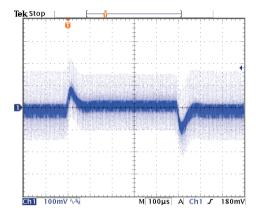

Conduction Emission of EN55022 Class A Vin(nom); Full Load

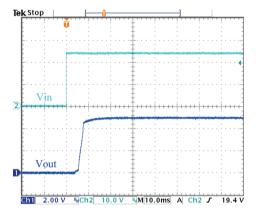

Conduction Emission of EN55022 Class B Vin(nom); Full Load

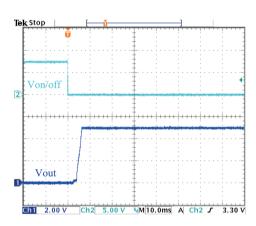

Efficiency versus Output Current


Power Dissipation versus Output Current

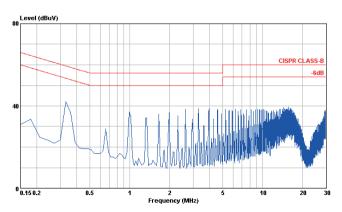

Efficiency versus Input Voltage Full Load

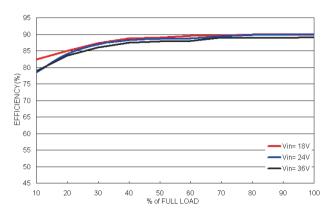

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

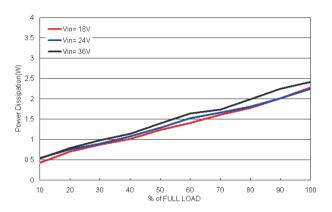

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

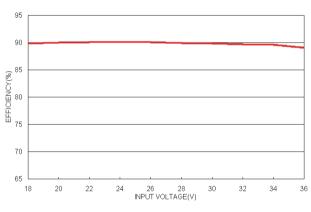

Typical Output Ripple and Noise. Vin(nom); Full Load

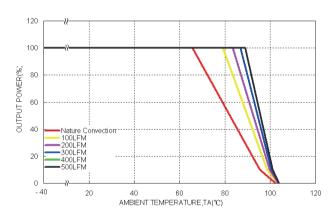

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

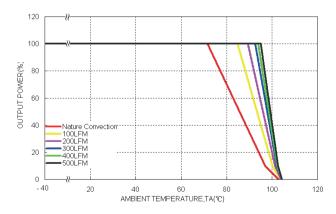

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

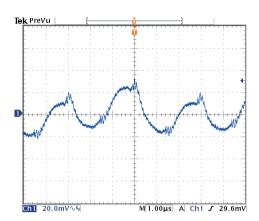

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

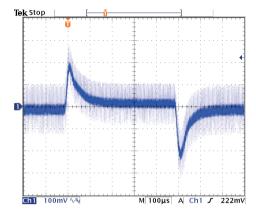

Conduction Emission of EN55022 Class A Vin(nom); Full Load

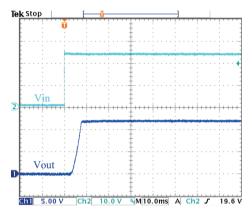

Conduction Emission of EN55022 Class B Vin(nom); Full Load

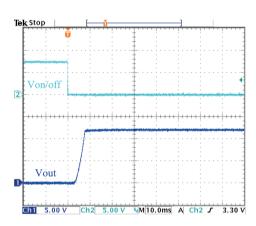

Efficiency versus Output Current

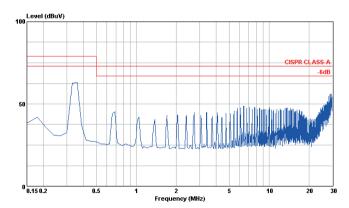

Power Dissipation versus Output Current

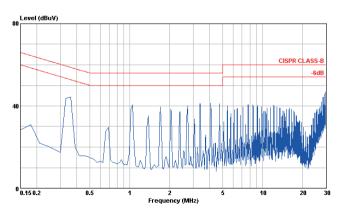

Efficiency versus Input Voltage Full Load

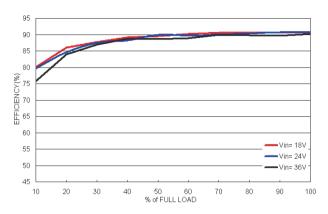

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

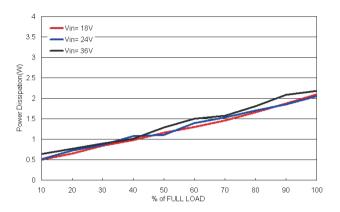

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

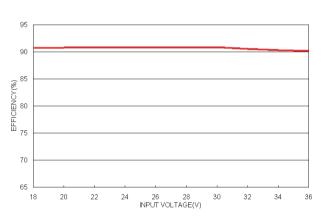

Typical Output Ripple and Noise. Vin(nom); Full Load

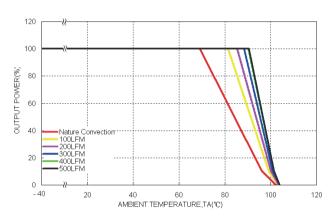

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

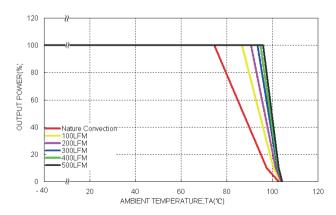

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

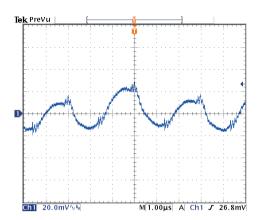

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

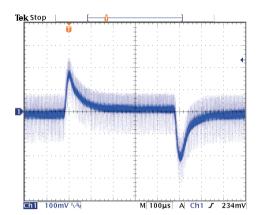

Conduction Emission of EN55022 Class A Vin(nom); Full Load

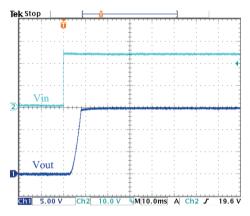

Conduction Emission of EN55022 Class B Vin(nom); Full Load

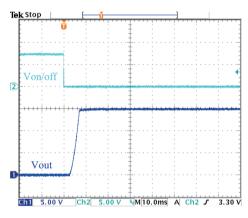

Efficiency versus Output Current

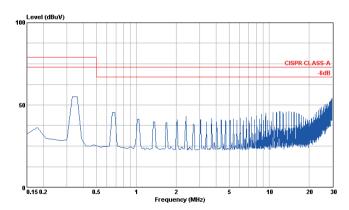

Power Dissipation versus Output Current

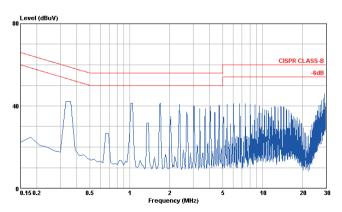

Efficiency versus Input Voltage Full Load

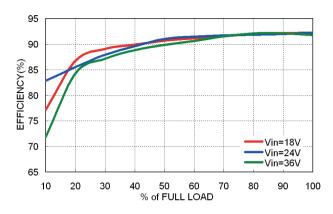

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

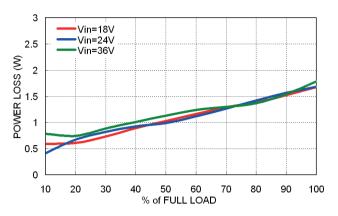

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)


Typical Output Ripple and Noise. Vin(nom); Full Load

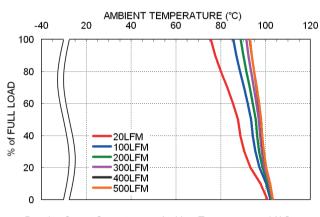

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

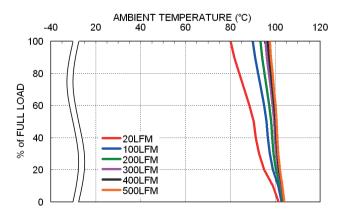

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

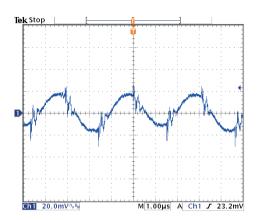

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

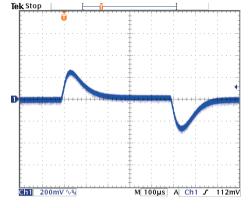

Conduction Emission of EN55022 Class A Vin(nom); Full Load

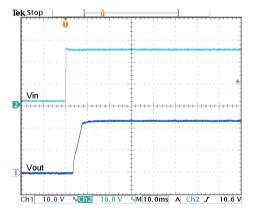

Conduction Emission of EN55022 Class B Vin(nom); Full Load

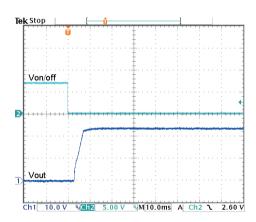

Efficiency versus Output Current

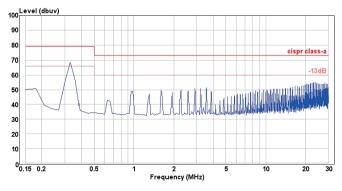

Power Dissipation versus Output Current

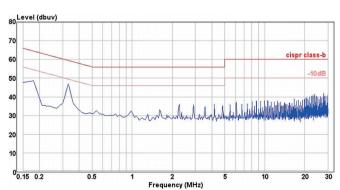

Efficiency versus Input Voltage Full Load

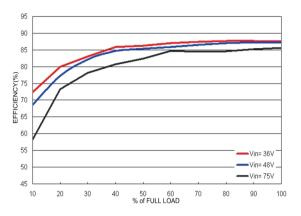

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

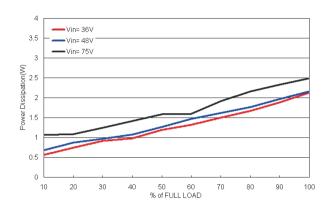

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

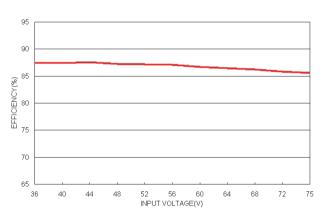

Typical Output Ripple and Noise. Vin(nom); Full Load

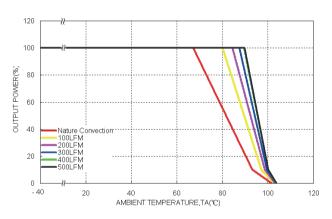

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

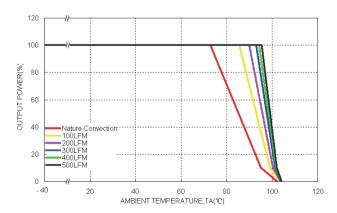

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

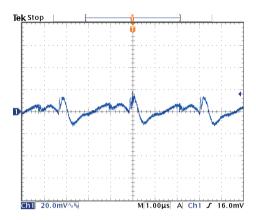

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

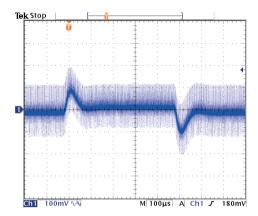

Conduction Emission of EN55022 Class A Vin(nom); Full Load

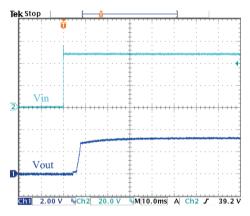

Conduction Emission of EN55022 Class B Vin(nom); Full Load

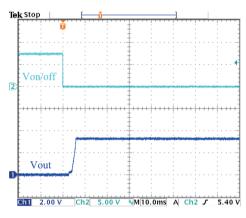

Efficiency versus Output Current

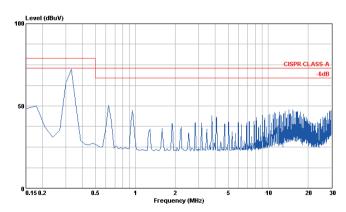

Power Dissipation versus Output Current

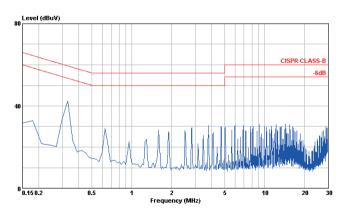

Efficiency versus Input Voltage Full Load

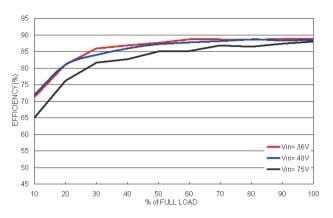

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

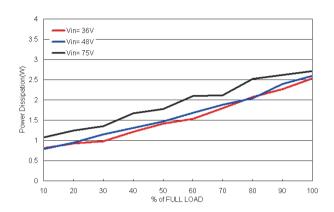

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

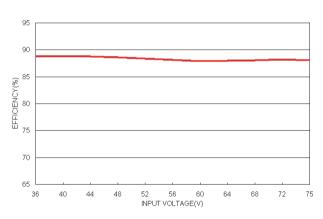

Typical Output Ripple and Noise. Vin(nom); Full Load

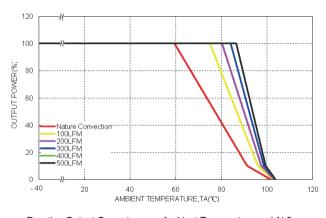

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

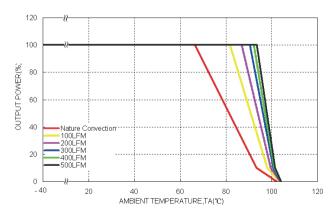

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

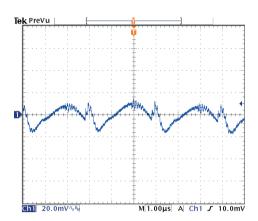

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load


Conduction Emission of EN55022 Class A Vin(nom); Full Load

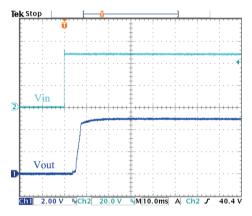

Conduction Emission of EN55022 Class B Vin(nom); Full Load

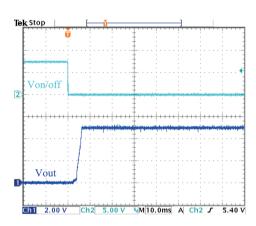

Efficiency versus Output Current

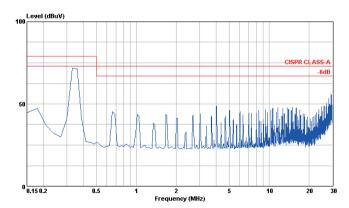

Power Dissipation versus Output Current

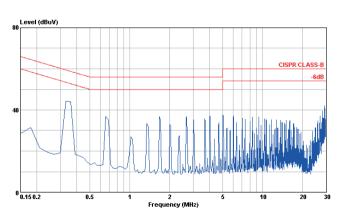

Efficiency versus Input Voltage Full Load

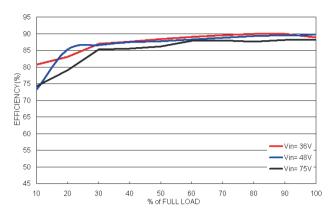
Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

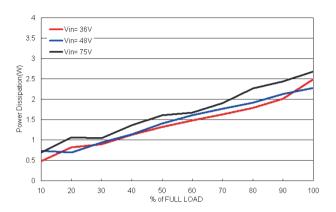

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

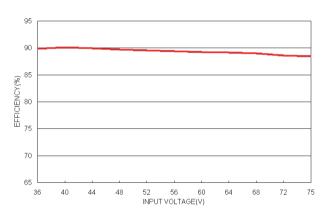

Typical Output Ripple and Noise. Vin(nom); Full Load

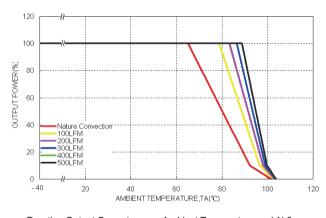

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

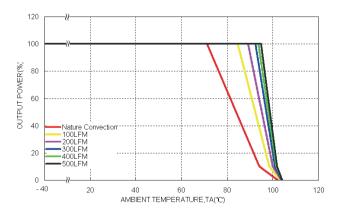

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

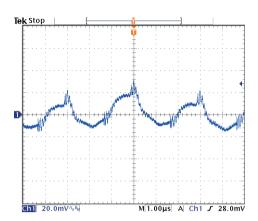

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

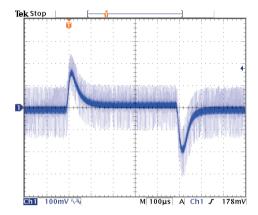

Conduction Emission of EN55022 Class A Vin(nom); Full Load

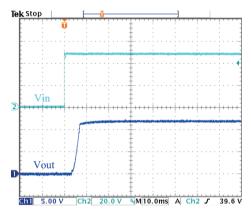

Conduction Emission of EN55022 Class B Vin(nom); Full Load

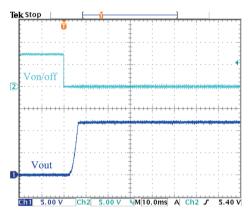

Efficiency versus Output Current


Power Dissipation versus Output Current

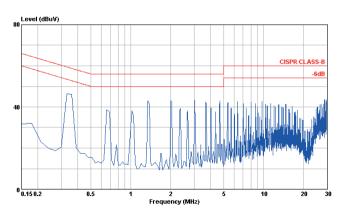

Efficiency versus Input Voltage Full Load

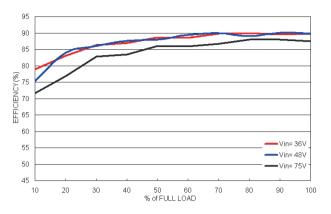

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

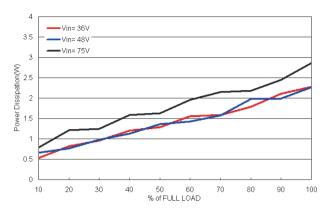

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

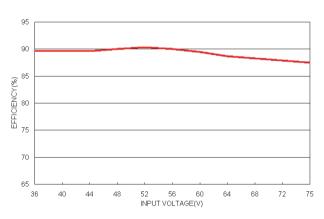

Typical Output Ripple and Noise. Vin(nom); Full Load

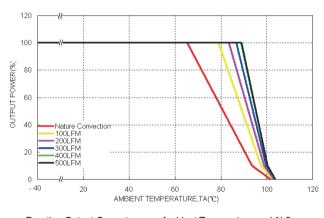
Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

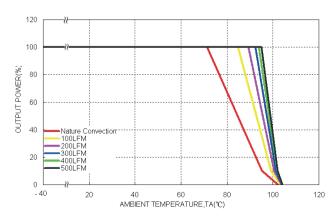

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

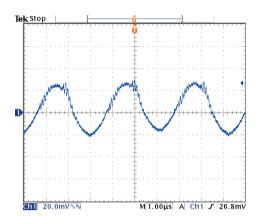

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

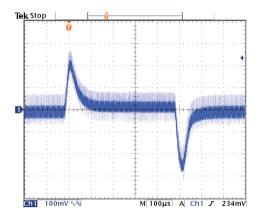

Conduction Emission of EN55022 Class A Vin(nom); Full Load

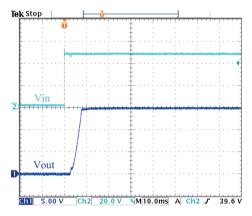

Conduction Emission of EN55022 Class B Vin(nom); Full Load

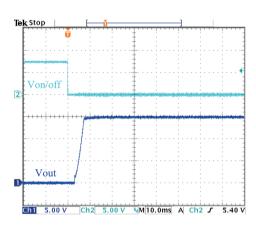

Efficiency versus Output Current

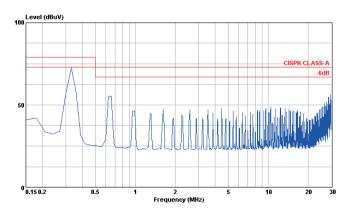

Power Dissipation versus Output Current

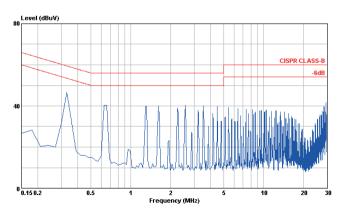

Efficiency versus Input Voltage Full Load

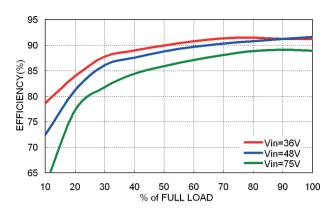

Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

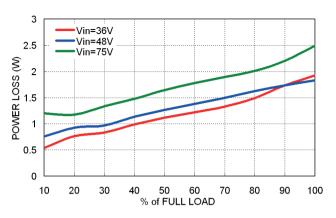

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)

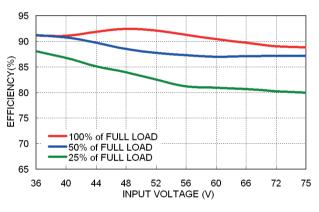

Typical Output Ripple and Noise. Vin(nom); Full Load

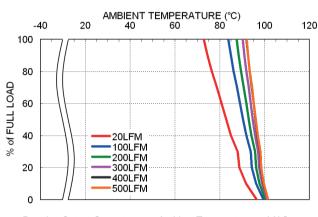

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)

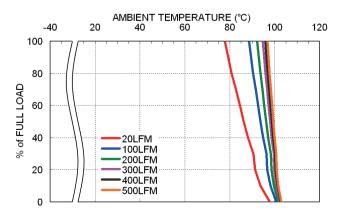

Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

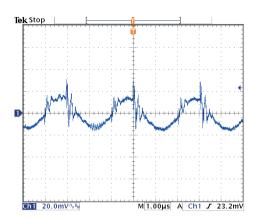

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load

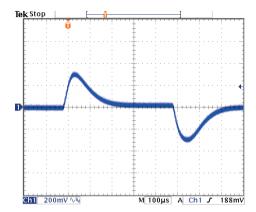

Conduction Emission of EN55022 Class A Vin(nom); Full Load

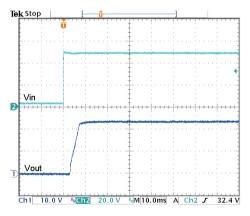

Conduction Emission of EN55022 Class B Vin(nom); Full Load

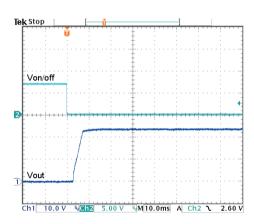

Efficiency versus Output Current

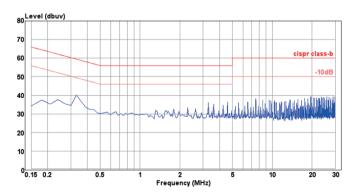

Power Dissipation versus Output Current

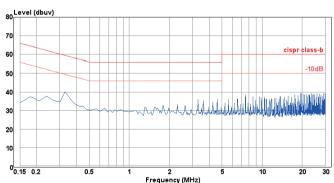

Efficiency versus Input Voltage Full Load


Derating Output Current versus Ambient Temperature and Airflow Vin(nom)

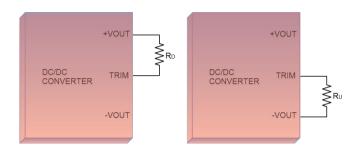

Derating Output Current versus Ambient Temperature with Heat-sink and Airflow, Vin(nom)


Typical Output Ripple and Noise. Vin(nom); Full Load


Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load; Vin(nom)


Typical Input Start-Up and Output Rise Characteristic Vin(nom); Full Load

Using ON/OFF Voltage Start-Up and Output Rise Characteristic Vin(nom); Full Load


Conduction Emission of EN55022 Class A Vin(nom); Full Load

Conduction Emission of EN55022 Class B Vin(nom); Full Load

Output Voltage Adjustment

Output voltage set point adjustment allows the user to increase or decrease the output voltage set point of the module. This is accomplished by connecting an external resistor between the TRIM pin and either the +OUTPUT or -OUTPUT pins. With an external resistor between the TRIM and -OUTPUT pin, the output voltage set point increases. With an external resistor between the TRIM and +OUTPUT pin, the output voltage set point decreases. The external TRIM resistor needs to be at least 1/16W of rated power.

Trim up equation

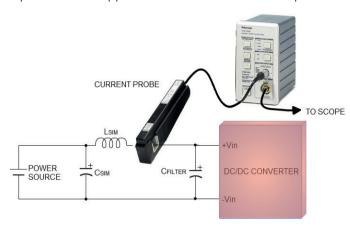
$$R_{U} = \left[\frac{G \times L}{\left(V_{O,up} - L - K\right)} - H \right] \Omega$$

Trim down equation

$$R_{D} = \left[\frac{\left(V_{o,down} - L\right) \times G}{\left(V_{o} - V_{o,down}\right)} - H \right] \Omega$$

Trim constants

Module	G	Н	K	L
PMF20-□□S3P3	5110	2050	0.8	2.5
PMF20-□□S05	5110	2050	2.5	2.5
PMF20-□□S12	10000	5110	9.5	2.5
PMF20-□□S15	10000	5110	12.5	2.5
PMF20-□□S24	56000	13000	21.5	2.5


Output voltage adjustment configurations

PMF20-DDS	S3P3	Trim-Up									
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	3.333	3.366	3.399	3.432	3.465	3.498	3.531	3.564	3.597	3.630
RU	$(k\Omega)$	385.071	191.511	126.990	94.730	75.374	62.470	53.253	46.340	40.963	36.662
PMF20-□□S	3P3	Trim-Dow	'n								
Trim-Down	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	3.267	3.234	3.201	3.168	3.135	3.102	3.069	3.036	3.003	2.970
RD	(kΩ)	116.719	54.779	34.133	23.810	17.616	13.486	10.537	8.325	6.604	5.228
		_									
PMF20-		Trim-Up	0	•	4	-	•	7	0	0	10
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	5.050	5.100	5.150	5.200	5.250	5.300	5.350	5.400	5.450	5.500
RU	(kΩ)	253.450	125.700	83.117	61.825	49.050	40.533	34.450	29.888	26.339	23.500
PMF20-□□S	805	Trim-Dow	n								
Trim-Down	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	4.950	4.900	4.850	4.800	4.750	4.700	4.650	4.600	4.550	4.500
RD	(kΩ)	248.340	120.590	78.007	56.715	43.940	35.423	29.340	24.778	21.229	18.390
PMF20-□□S	212	Trim-Up									
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	12.120	12.240	12.360	12.480	12.600	12.720	12.840	12.960	13.080	13.200
RU	(kΩ)	203.223	99.057	64.334	46.973	36.557	29.612	24.652	20.932	18.038	15.723
10	(1/35)	200.220	33.037	04.004	40.070	00.007	20.012	24.002	20.002	10.000	10.720
PMF20-□□S	S12	Trim-Dow	n								
Trim-Down	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	11.880	11.760	11.640	11.520	11.400	11.280	11.160	11.040	10.920	10.800
RD	(kΩ)	776.557	380.723	248.779	182.807	143.223	116.834	97.985	83.848	72.853	64.057
PMF20-DDS	S15	Trim-Up									
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	15.150	15.300	15.450	15.600	15.750	15.900	16.050	16.200	16.350	16.500
RU	(kΩ)	161.557	78.223	50.446	36.557	28.223	22.668	18.700	15.723	13.409	11.557
D14500 ===0											
PMF20-DDS Trim-Down	(%)	Trim-Dow 1	n 2	3	4	5	6	7	8	9	10
Vout		14.850	14.700	14.550	14.400	14.250	14.100	13.950	13.800	13.650	13.500
RD RD	(V) (kΩ)	818.223	401.557	262.668	193.223	151.557	123.779	103.938	89.057	77.483	68.223
	(**=)										
PMF20-□□S	624	Trim-Up									
Trim-Up	(%)	1	2	3	4	5	6	7	8	9	10
Vout	(V)	24.240	24.480	24.720	24.960	25.200	25.440	25.680	25.920	26.160	26.400
RU	(kΩ)	570.333	278.667	181.444	132.833	13.667	84.222	70.333	59.917	51.815	45.333
PMF20-□□S	S24	Trim-Up									
Trim-Up	(%)	11	12	13	14	15	16	17	18	19	20
Vout	(V)	26.640	26.880	27.120	27.360	27.600	27.840	28.080	28.320	28.560	28.800
RU	(kΩ)	40.030	35.611	31.872	28.667	25.889	23.458	21.314	19.407	17.702	16.167
PMF20-DDS		Trim-Dow				_	•	_	•	•	40
Trim-Down	(%)	1	2	3	4	5	6	7	8	9	10
Vout RD	(V) (kΩ)	23.760	23.520	23.280	23.040	22.800	22.560	22.320	22.080	21.840	21.600
		4947.667	2439.333	1603.222	1185.167	934.333	767.111	647.667	558.083	488.407	432.667

Input Source Impedance

The power module should be connected to a low impedance input source. Highly inductive source impedance can affect the stability of the power module. Install CSIM and LSIM to simulate the impedance of power source. External input capacitors CFILTER serve primarily as energy-storage elements, minimizing line voltage variations caused by transient IR drops in conductors from backplane to the DC/DC. The capacitor must as close as possible to the input terminals of the power module for lower impedance. For the input reflected-ripple current measurement configuration is shown as below:

Input Refleced Ripple Current Measurement Setup

PMF20-□□S□□

Component	Value	Voltage	Reference
L _{SIM}	12μΗ		Inductor
C _{SIM} C _{FILTER}	10μF	100V	Nippon chemi-con KY-series
Onti HELEN			

Output Over Current Protection

When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current is maintained at approximately 150 percent of rated current for T15AW single output series.

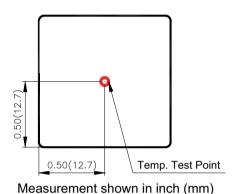
Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of protecting the power supply when it is over-loaded, such as the maximum current limiting or current fold-back methods.

One of the problems resulting from over current is that excessive heat may be generated in power devices; especially MOSFET and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to prevent those power devices from being damaged.

The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power supply for a given time and then tries to start up the power supply again. If the overload condition has been removed, the power supply will start up and operate normally; otherwise, the controller will see another over-current event and shut off the power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.

The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is detected; or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an over-current event is detected; or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices.

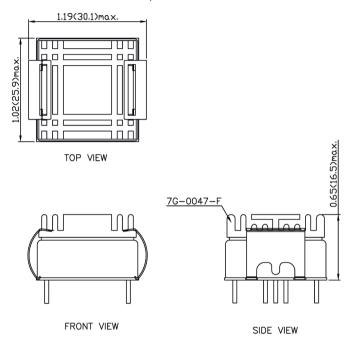
Output Short Circuitry Protection


Continuous, auto-recovery mode. During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety in this condition.

Output Over Voltage Protection

The output over-voltage protection consists of Zener diode that monitors the output voltage on the feedback loop. If the voltage on the output terminals exceeds the over-voltage protection threshold, then the Zener diode will send a current signal to the control IC to limiting the output voltage.

Thermal Consideration

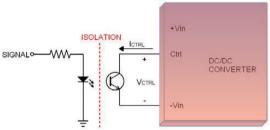

The power module operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point as the figure below. The temperature at this location should not exceed 105°C. When operating, adequate cooling must be provided to maintain the test point temperature at or below 105°C. Although the maximum point temperature of the power modules is 105°C, you can limit this temperature to a lower value for extremely high reliability.

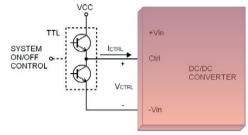

Heat-Sink Considerations

Equip heat-sink for lower temperature and higher reliability of the module. There are two types for choosing.

Suffix - HC: Heat-sink + Clamp

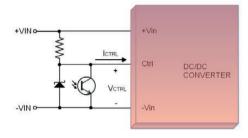
Suffix -HS: Heat-sink



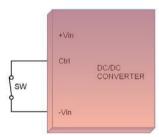

All dimensions in inch (mm)

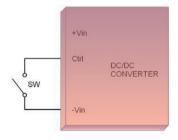
Remote On/Off Control

The Ctrl Pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high or low level of the pin referenced to -Vin. The switch can be open collector transistor, FET and Photo-Coupler. The switch must be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the Ctrl pin signal maximum voltage is allowable leakage current of the switch at 12V is 0.5 mA.


Remote ON/OFF Implementation

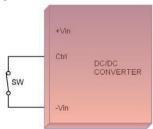
Isolated-Closure Remote ON/OFF


Level Control Using TTL Output

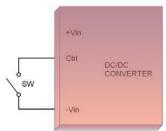

Level Control Using Line Voltage

There are two remote control options available, positive logic and negative logic.

a. The positive logic structure turned on of the DC/DC module when the Ctrl pin is at high-level logic and low-level logic is turned off it.

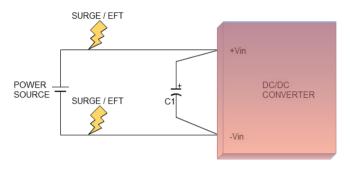


When PMF20 module is turned off at Low-level logic



When PMF20 module is turned on at High-level logic

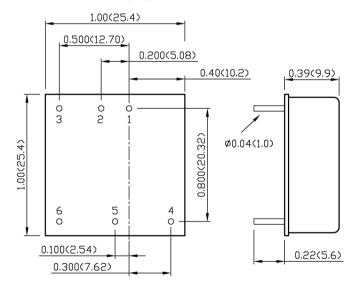
b. The negative logic structure turned on of the DC/DC module when the Ctrl pin is at low-level logic and turned off when at high-level logic.


When PMF20 module is turned on at Low-level logic

When PMF20 module is turned off at High-level logic

EMS Considerations

The PMF20 series can meet Fast Transient EN61000-4-4 and Surge EN61000-4-5 performance criteria A with external components connected to the input terminals of the module. Please see the following schematics as below.

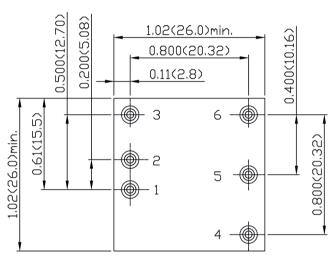


Surge/Fast Transient PMF20-□□S□□W

Component	Value	Voltage	Reference
C1	220µF	100V	Nippon chemi-con KY-series

Mechanical Data

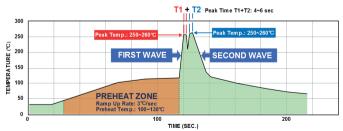
1. All dimensions in inch (mm)


BOTTOM VIEW

- 2. Tolerance: X.XX±0.02 (X.X±0.5) X.XXX±0.01 (X.XX±0.25)
- 3. Pin pitch tolerance ±0.01(0.25)
- 4. Pin dimension tolerance ±0.004 (0.1)

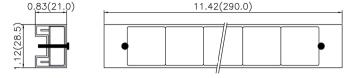
Pin Connection

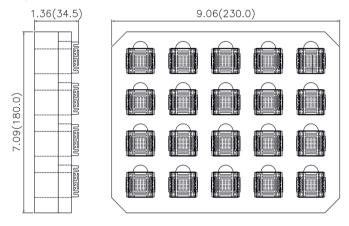
Define
+Vin
-Vin
Ctrl
+Vout
Trim
-Vout


Recommended Pad Layout

All dimensions in inch(mm)
Pad size(lead free recommended)
Through hole:00.051(01.30)
Top view pad:00.064(01.63)
Bottom view pad:00.102(02.60)

Soldering Considerations


Lead free wave solder profile


Reference Solder: Sn-Ag-Cu: Sn-Cu Hand Welding (Reference): Soldering iron: Power 150W Welding Time: 3~6 sec Temp: 410~430°C

Packing Information

Tube

Model Type	Packing Material	Quantity
Without Heat-sink	Tube	10 PCS / Tube
With Heat-sink	Tray	20 PCS / Tray

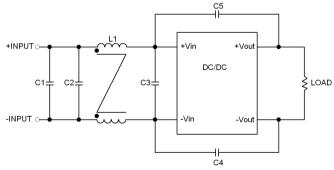
Safety and Installation Instruction

Fusing Consideration

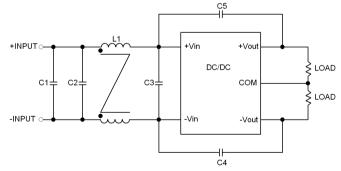
Caution: This power module is not internally fused. An input line fuse must always be used.

This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The input line fuse suggest as below:

Model	Fuse Rating	Fuse Type
PMF20-12S□□	4	Slow-Blow
PMF20-24S□□	2	Slow-Blow
PMF20-48S□□	1.25	Slow-Blow


Based on the information provided in this application note on Inrush energy and maximum DC input current at low Vin. If customer have another used condition and need more information, please contact Powerbox.

MTBF and Reliability


The MTBF of PMF20 SINGLE-SERIES of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25°C. The resulting figure for MTBF is 1.477x10⁶ hours.

The series modules can meet EN55022 A without external filter

Recommended external EMI filter for EN55022 Class B

Dual Output

Model	C1	C2	C3	C4, C5	L1
PMF20-12	4.7µF/25V	N/A	N/A	470pF/2kV	325µH
	1812 MLCC			1808 MLCC	Common Choke
					PMT-050
PMF20-24□□□	4.7µF/50V	N/A	N/A	470pF/2kV	325µH
	1812 MLCC			1808 MLCC	Common Choke
					PMT-050
PMF20-48□□□	2.2µF/100V	2.2µF/100V	2.2µF/100V	1000pF/2kV	325µH
	1812 MLCC	1812 MLCC	1812 MLCC	1808 MLCC	Common Choke
					PMT-050

www.prbx.com 2017.10.03 42