P R B X

POWERBOX Medline PMM03(W) & PMP03(W) Series 3.3W 2:1 & 4:1 Single and Dual Output Medical DC/DC Converter Manual

P1
P2
P3
P4

1. Typical Application

• Below shows some blocks connected between power source and DC/DC module. Install the circuit of the block which is required.

• Each block has individual function and should be placed on the corresponding location.

• If CEMI is an Aluminum electrolytic capacitor and connected in parallel with CEMS. The capacitance we recommended for meeting EMS requirements could be CEMS pluses CEMI.

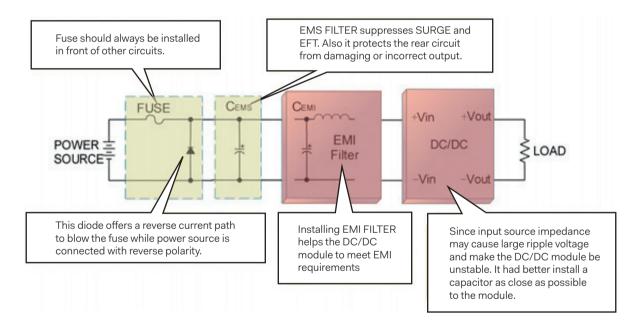


Fig. 1-1 Typical application

2. Line Protections

Fuse

• The DC/DC converter is not internally fused. An input line fuse must always be used.

• Fuses should be installed in front of each module when multiple DC/DC converters connect to the same power source.

Model	Fuse Rating (A)	Fuse Type
PMD03-05000	1.6	Slow-Blow
PM03-12000	0.8	Slow-Blow
PM03-24	0.5	Slow-Blow
PMD03-48	0.315	Slow-Blow

Model	Fuse Rating (A)	Fuse Type
PMD03-24DDW	0.8	Slow-Blow
PM⊡03-48⊡⊡W	0.5	Slow-Blow

Table 2-1 FUSE selection

• According to actual current value, calculating fuse ratings base on the following equations:

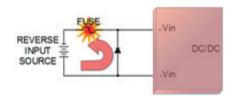
$$\begin{split} I_{FUSE} \geq & I_{in} \ / (rerating \ x \ safety \ margin) \\ Melting \ I^{2}t = & I^{2}_{PULSE,act} \cdot t \ / \ 0.22 \end{split}$$

Where

I_{FUSE} is current rating of fuse.

Iin is actual value of input current.

Rerating is percentage of fuse rating base on ambient temperature. Fuse rating is variety under different ambient temperature. Safety margin is percentage of fuse rating set by user.


Melting I²t is pulse energy rating of fuse.

I_{PULSE,act} is actual input pulse current.

t is the width of the input pulse current.

Reverse Input Voltage Protection

- Avoid the reverse polarity input voltage; otherwise, it will damage the DC/DC converter.
- It is likely to protect the module from the reverse input voltage by installing an external diode.
- The diode can block reverse voltage or blow the line fuse to protect DC/DC converter.
- Recommend using Schottky diode for reverse input voltage protection

Fig. 2-1 Reverse input voltage protection

Model		Voltage Rating of the Diode	Current Rating of the Diode
PMD03-05		20V	1~1.5 x Fuse Rating
PM□03-12□□□		40V	1~1.5 x Fuse Rating
PM□03-24□□□	PM⊡03-24⊡⊡W	60V	1~1.5 x Fuse Rating
PM□03-48□□□	PMD03-48000W	100V	1~1.5 x Fuse Rating

Fig. 2-2 Reverse protection diode selection

3. EMS Considerations

- The module can meet EMS requirements as below.
- An external input filter capacitor is required if the module has to meet EN61000-4-4, EN61000-4-5

Parameter	Conditions		Level
ESD	EN61000-4-2	Air ±15kV and Contact ±8kV	Perf. Criteria A
Radiated immunity	EN61000-4-3	10V/m	Perf. Criteria A
Fast transient	EN61000-4-4	±2kV	Perf. Criteria A
Surge	EN61000-4-5	±2kV	Perf. Criteria A
Conducted immunity	EN61000-4-6	10Vr.m.s	Perf. Criteria A
Power frequency magnetic field	EN61000-4-8	100A/m continuous; 1000A/m 1 second	Perf. Criteria A

Table 3-1 EMS requirements

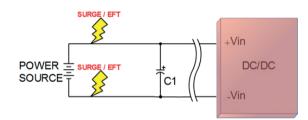
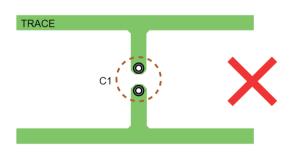



Fig. 3-1 Surge & EFT protections

• It should be noticed that the current path of the PCB trace. Wrong PCB layout reduces ability of suppressing SURGE or EFT.

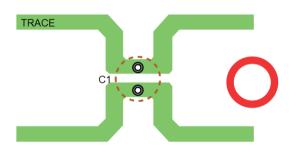
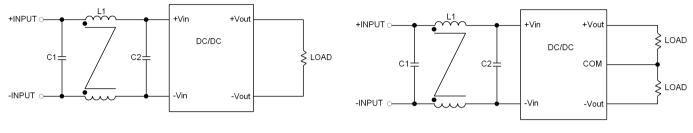



Fig. 3-2 PCB trace

Model	Component	Specification	Reference	
PMD03-05	C1	1000µF/25V	Nippon Chemi-con KY series	
PM003-12000	C1	470µF/50V	Nippon Chemi-con KY series	
PMD03-24	C1	470µF/50V	Nippon Chemi-con KY series	
PM□03-48□□□	C1	330µF/100V	Nippon Chemi-con KY series	

Table 3-2 Surge & EFT filter

4. EMI Considerations PMP03/PMP03W - Type A The series modules can meet EN55032 Class A without external filter **Recommended External EMI Filter for EN55032 Class A**

Single Output

Dual Output

Fig. 4-1 Recommended EMI filter for EN55032 Class A

C1	C2	L1	
22µF/16V	22µF/16V	137µH, PMT-127	
1206 MLCC	1206 MLCC		
4.7µF/50V	4.7µF/50V	277µH, PMT-128	
1206 MLCC	1206 MLCC		
2.2µF/100V	1µF/100V	175µH, PMT-118	
1210 MLCC	1206 MLCC		
	22µF/16V 1206 MLCC 4.7µF/50V 1206 MLCC 2.2µF/100V	22μF/16V 22μF/16V 1206 MLCC 1206 MLCC 4.7μF/50V 4.7μF/50V 1206 MLCC 1206 MLCC 2.2μF/100V 1μF/100V	22μF/16V 22μF/16V 137μH, PMT-127 1206 MLCC 1206 MLCC 4.7μF/50V 4.7μF/50V 1206 MLCC 1206 MLCC 2.2μF/100V 1μF/100V 175μH, PMT-118

Table 4-1 B.O.M. of external EMI filter

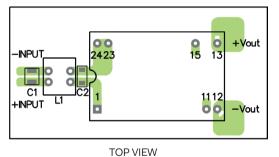
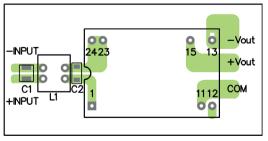
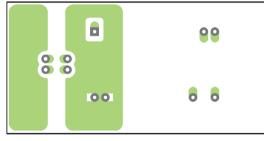
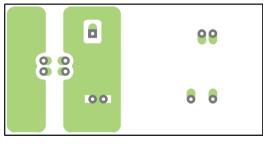
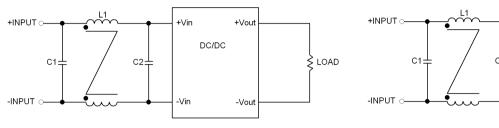
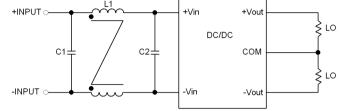




Fig. 4-2 Recommended layout pattern for Single Output



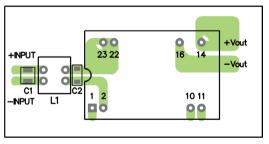
TOP VIEW


Fig. 4-3 Recommended layout pattern for Dual Output


BOTTOM VIEW

4. EMI Considerations PMP03/PMP03W - Type B The series modules can meet EN55032 Class A without external filter **Recommended External EMI Filter for EN55032 Class B**

Single Output



Dual Output

Fig. 4-4 Recommended EMI filter for EN55032 Class B

Model	C1	C2	L1
PMP03-05	22µF/16V	22µF/16V	137µH, PMT-127
	1206 MLCC	1206 MLCC	
PMP03-012	4.7µF/50V	4.7µF/50V	277µH, PMT-128
PMP03-24	1206 MLCC	1206 MLCC	
PMP03-24			
PMP03-48	2.2µF/100V	1µF/100V	175µH, PMT-118
PMP03-48	1210 MLCC	1206 MLCC	

Table 4-2 B.O.M. of external EMI filter

TOP VIEW

Fig. 4-5 Recommended layout pattern for Single Output

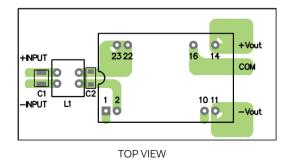
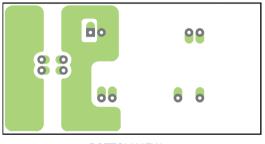
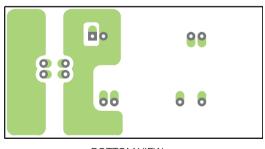




Fig. 4-6 Recommended layout pattern for Dual Output

BOTTOM VIEW

4. EMI Considerations PMM03/PMM03W - Type A The series modules can meet EN55032 Class A without external filter **Recommended External EMI Filter for EN55032 Class B**

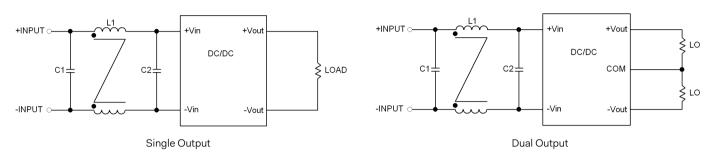
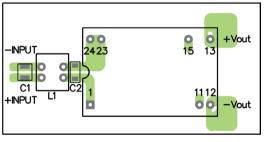



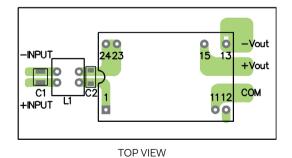
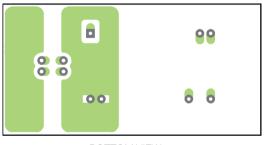
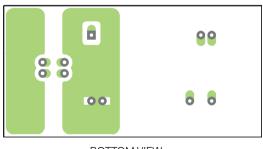
Fig. 4-7 Recommended EMI filter for EN55032 Class B

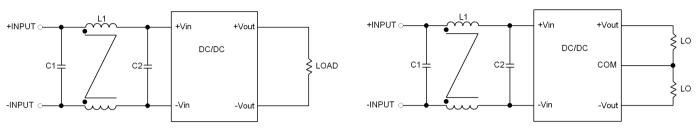
Model	C1	C2	L1
PMM03-05	22µF/16V	22µF/16V	137µH, PMT-127
	1206 MLCC	1206 MLCC	
PMM03-012	4.7µF/50V	4.7µF/50V	277µH, PMT-128
PMM03-24	1206 MLCC	1206 MLCC	
PMM03-24			
PMM03-48	2.2µF/100V	1µF/100V	175µH, PMT-118
PMM03-48	1210 MLCC	1206 MLCC	

Table 4-3 B.O.M. of external EMI filter

TOP VIEW

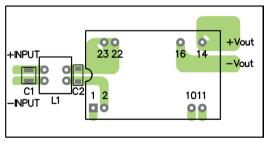
Fig. 4-8 Recommended layout pattern for Single Output


Fig. 4-9 Recommended layout pattern for Dual Output

BOTTOM VIEW

4. EMI Considerations PMM03/PMM03W - Type B The series modules can meet EN55032 Class A without external filter **Recommended External EMI Filter for EN55032 Class B**


Single Output

Dual Output

Fig. 4-10 Recommended EMI filter for EN55032 Class B

Model	C1	C2	L1
PMM03-05	22µF/16V	22µF/16V	137µH, PMT-127
	1206 MLCC	1206 MLCC	
PMM03-12	4.7µF/50V	4.7µF/50V	277µH, PMT-128
PMM03-24	1206 MLCC	1206 MLCC	
PMM03-24			
PMM03-48	2.2µF/100V	1µF/100V	175µH, PMT-118
PMM03-48	1210 MLCC	1206 MLCC	

Table 4-4 B.O.M. of external EMI filter

TOP VIEW

Fig. 4-11 Recommended layout pattern for Single Output

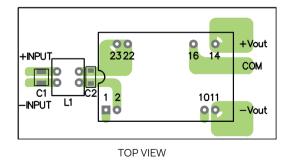
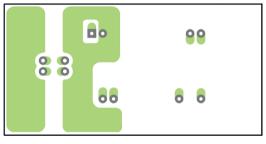
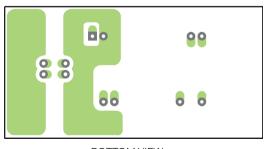




Fig. 4-12 Recommended layout pattern for Dual Output

BOTTOM VIEW

